

May
2023

Investigating Deep
Neural Networks in
the Context of
Surface Defect
Detection in Metal
Casting

DISSERTATION

Word count: ≈14400

Theodore Smith Scott

Student ID: 3905438

Honours Computer Science Project

BSc Hons Computer Science

School of Engineering

London South Bank University

i

Declaration

This dissertation is my own original work and has not been submitted elsewhere in fulfilment of

the requirements of this or any other award. Any passages taken from my own previous work or

other people's work have been quoted and acknowledged by clear referencing to author, source

and page(s). Any non-original illustrations are also referenced. I understand that failure to do this

amounts to plagiarism and will be considered grounds for failure in this dissertation and the

degree as a whole.

Theodore Smith Scott

ii

Abstract

This report proposes a faster, more efficient approach to existing automated surface defect

detection architectures, using a deep learning model based on R-CNN. The efficacy of machine

learning and deep neural network models is highly reliant on being provided with a high-quality

and representative dataset, therefore the research carried out in this report also proposes the

use of relevant data pre-processing methods for the model to produce accurate results. The

testing and modelling are carried out in the context of metal casting in submersible pump

impellers. In addition to the production of a model, there is a comparison to existing machine

learning architectures and a proof of concept in the form of a web-based graphical user interface

that demonstrates the model’s applicability to the industry.

iii

Acknowledgements

First and foremost, I would like to extend my heartfelt gratitude to my supervisor, Dr. Bugra Alkan,

whose invaluable guidance and support have been instrumental in making this project possible. I

am immensely grateful for their expertise, encouragement, and unwavering dedication to my

growth and development.

I would also like to express my deep appreciation to my incredible girlfriend for her unwavering

support and understanding throughout my academic journey. Her encouragement and love have

been a constant source of motivation, and I am truly fortunate to have her steadfast belief in my

potential.

Furthermore, I would like to extend my thanks to my family and friends for their continuous

support and encouragement. Their presence and positive influence have been instrumental in

keeping me motivated and maintaining a positive mindset throughout my studies.

I am truly fortunate to have such a remarkable support system, and I am grateful for the

opportunities and encouragement they have provided me along the way.

iv

Table of Contents

Declaration ... i

Abstract .. ii

Acknowledgements ... iii

Table of Contents ... iv

List of Figures... viii

List of Tables ... x

Glossary .. xi

1. Introduction .. 1

1.1 Background .. 1

1.2 Research Motivation .. 2

1.3 Research Questions .. 3

1.4 Aim and Objectives .. 3

1.4.1 Project Aim ... 3

1.4.2 Objectives ... 4

1.5 Research Scope .. 4

1.6 Report Structure .. 5

2. Literature Review .. 6

2.1 Image Processing .. 6

2.1.1 Low-Level Processes ... 7

2.1.2 Mid-Level Processes ... 7

2.1.3 High-Level Processes .. 8

2.2 Data Pre-processing ... 8

2.3 Feature Extraction Methods ... 9

2.4 Surface Defect Detection Methods ... 11

2.4.1 Traditional Methods ... 12

Statistical Methods .. 12

Filter-based (Spectral) Methods .. 12

Model-based Methods .. 13

Learning-based Methods ... 13

2.4.2 Deep Learning-based Methods .. 13

2.5 Surface Defect Detection Applications .. 14

2.6 Existing Deep Learning Models ... 15

2.6.1 VGG16 vs Resnet50 [29] ... 15

v

2.6.2 VGG16 vs InceptionV3 vs ResNet50 [30] .. 18

2.7 Gap Analysis .. 20

3. Technical Review .. 21

3.1 Data Acquisition Tools .. 21

3.1.1 Hardware Components .. 22

Analogue-to-Digital Converter .. 22

Sensors .. 22

3.1.2 Software Components .. 22

WINDAQ .. 22

ActiveX ... 22

3.2 Data Analytics Tools & Platforms (Backend) .. 23

3.2.1 Open Source ... 23

Python vs R (Programming Language)... 23

OpenCV .. 23

TensorFlow vs PyTorch .. 24

NumPy vs Pandas .. 24

3.2.2 Commercial .. 25

MATLAB ... 25

LabelBox .. 25

3.3 Front-end Dashboard and Visualization Platforms ... 25

3.3.1 Flask .. 26

3.3.2 FastAPI .. 26

3.3.3 Django .. 26

3.4 Comparison of Front-end Technologies ... 27

4. Research Methodology... 28

4.1 Overview ... 28

4.1.1 Research ... 28

Dataset .. 28

Pre-processing ... 30

4.1.2 Development .. 30

Action Plan .. 31

Risk Assessment .. 32

4.2 Requirements .. 33

4.2.1 Model ... 33

4.2.2 Front-end Application .. 34

4.3 ML Models ... 36

4.3.1 VGG-16 ... 36

4.3.2 InceptionV3 .. 37

4.3.3 ResNet50 .. 37

4.4 Performance Metrics .. 38

vi

4.4.1 Accuracy ... 39

4.4.2 Precision ... 40

4.4.3 Recall .. 40

4.4.4 F1-Score .. 40

4.4.5 Summary of Metrics ... 41

4.4.6 Implementation .. 41

4.5 Hyperparameter Tuning ... 46

4.5.1 Manual Search .. 46

4.5.2 Automatic Search ... 47

Grid Search .. 47

Random Search ... 47

Bayesian Optimization ... 48

Evaluation of Techniques .. 48

4.5.3 Implementation .. 49

4.6 Sensitivity Analysis ... 52

4.6.1 Error Detection and Model Calibration .. 52

4.7 Activation Map .. 53

4.7.1 CAM .. 54

4.7.2 Grad-CAM ... 54

4.8 Front-end Design .. 55

4.8.1 Implementation ... 57

5. Results and Discussion .. 64

5.1 Performance Analysis of ML Models ... 64

5.1.1 Experimental Comparison .. 64

Dataset Split .. 64

Input Image Dimensions .. 65

Results (224x224 Images) .. 66

Discussion .. 67

Results (128x128 Images) .. 68

Discussion .. 70

Model File Sizes ... 71

5.2 Hyperparameter Tuning Results .. 72

5.2.1 Selected Hyperparameters ... 72

Learning Rate ... 72

Dropout Rate ... 72

Adam Optimizer .. 73

Justification for Selected Hyperparameters .. 73

5.2.2 Tuning Attempt 1 ... 73

5.2.3 Tuning Attempt 2 ... 75

5.2.4 Tuning Attempt 3 (Final) .. 77

Result Verification ... 79

Graph Results Discussion... 82

vii

5.3 GUI and User Experience .. 83

5.4 Discussion .. 87

6. Conclusion and Future Work ... 89

6.1 Verification of the Study ... 89

6.2 Limitations ... 90

6.2.1 Unmet Requirements ... 90

6.2.2 Additional Limitations .. 91

6.3 Future Work ... 91

6.4 Conclusion ... 92

7. References ... 93

Appendix .. 102

Miscellaneous ... 102

Ethics Form ... 102

Project Directory Structure ... 103

requirements.txt ... 104

Application Code ... 106

app.py ... 106

localization.py ... 108

train.py .. 110

main.py ... 112

index.html ... 113

style.css ... 116

Experiment Code ... 117

comparison.py .. 117

hyperparameters.py ... 123

graph.py .. 126

dataset.py ... 127

viii

List of Figures

Figure 1 - Contrast Enhancement Example using Histogram Equalization [89] 6

Figure 2 - Section of a Table Showing DL based Applications with Pre-processing Techniques

[12] ... 9

Figure 3 - Feature Extraction Demonstration [91] .. 10

Figure 4 - Traditional (a) vs. Deep Learning (b) Computer Vision Workflow [18] 11

Figure 5 - Basic CNN Network Architecture [92] ... 14

Figure 6 - VGG16 vs ResNet50 Recall Table [29] ... 16

Figure 7 - VGG16 vs ResNet50 Precision Table [29] .. 16

Figure 8 - Expression Dataset Distribution [29] .. 18

Figure 9 - COVID-19 and Pneumonia Model Performance [30] ... 18

Figure 10 - Dataset Sample .. 29

Figure 11 - Jira Roadmap ... 31

Figure 12 - VGG-16 Architecture [98] ... 36

Figure 13 - InceptionV3 Architecture [99] .. 37

Figure 14 - ResNet50 Architecture [100] .. 38

Figure 15 - Confusion Matrix [56] .. 39

Figure 16 - train_model() Function .. 42

Figure 17 - build_model() Function .. 43

Figure 18 - build_custom_model() Function ... 44

Figure 19 - Model Evaluation Call .. 44

Figure 20 - evaluate_model() Function .. 45

Figure 21 - calculate_rates() Function .. 45

Figure 22 - hyperparameters.py build_model() Function ... 49

Figure 23 - hyperparameters.py optimize_model() Function .. 50

Figure 24 - hyperparameters.py Invokation ... 51

Figure 25 - Shoe Activation Map [101] ... 53

Figure 26 - Frontend Application Flowchart ... 55

Figure 27 - GUI Wireframe .. 56

Figure 28 - Implementation Default Endpoint .. 57

Figure 29 - Bootstrap and Custom CSS Link Tags .. 57

Figure 30 - Custom CSS Class ... 57

Figure 31 - Implementation Template Body ... 58

Figure 32 - JQuery 'on file change' Logic .. 58

Figure 33 - Implementation Template JQuery .. 59

Figure 34 - Implementation '/process-image' Check .. 60

Figure 35 - Implementation '/process-image' File Saving and Processing 60

https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348822
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348823
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348823
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348824
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348825
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348826
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348827
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348828
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348829
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348830
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348831
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348832
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348833
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348834
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348835
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348836
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348837
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348838
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348839
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348840
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348841
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348842
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348843
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348844
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348845
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348846
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348847
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348848
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348849
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348850
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348851
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348852
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348853
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348854
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348855
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348856

ix

Figure 36 - Implementation '/process-image' garbage_collection() Function 60

Figure 37 - localization.py 'is_defective()' Function .. 61

Figure 38 - Implementation '/process-image' Response ... 62

Figure 39 - localization.py 'save_activation_map()' Function.. 63

Figure 40 - Comparison Results Custom Model (224x224) .. 66

Figure 41 - Comparison Results VGG16 (224x224) .. 66

Figure 42 - Comparison Results InceptionV3 (224x224) .. 66

Figure 43 - Comparison Results ResNet50 (224x224) .. 67

Figure 44 - Comparison Results Custom Model (128x128) .. 68

Figure 45 - Comparison Results VGG16 (128x128) .. 68

Figure 46 - Comparison Results InceptionV3 (128x128) .. 69

Figure 47 - Comparison Results ResNet50 (128x128) .. 69

Figure 48 - Model File Sizes with 128x128 Input... 71

Figure 49 - Model File Sizes with 224x224 Input... 71

Figure 50 - Hyperparameter Tuning Ranges (Attempt 1) .. 74

Figure 51 - Hyperparameter Tuning Output (Attempt 1) .. 74

Figure 52 - Hyperparameter Tuning Ranges (Attempt 2) .. 75

Figure 53 - Hyperparameter Tuning Output (Attempt 2) .. 76

Figure 54 - Hyperparameter Tuning Ranges (Attempt 3) .. 77

Figure 55 - Hyperparameter Tuning Output (Attempt 3) .. 78

Figure 56 - Final Training Output ... 79

Figure 57 - Training and Validation Accuracy Plot .. 80

Figure 58 - Training and Validation Loss Plot.. 81

Figure 59 - Implementation Landing Page .. 83

Figure 60 - Implementation GUI Loading GIF ... 83

Figure 61 - Implementation GUI Error Message ... 84

Figure 62 - Implementation GUI Result (Not Defective) ... 85

Figure 63 - Implementation GUI Result (Defective) .. 86

Figure 64 - Implementation Performance Logs .. 87

https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348857
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348858
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348859
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348860
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348861
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348862
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348863
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348864
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348865
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348866
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348867
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348868
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348869
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348870
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348871
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348872
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348873
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348874
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348875
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348876
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348877
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348878
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348879
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348880
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348881
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348882
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348883
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348884
https://stulsbuac-my.sharepoint.com/personal/smithsct_lsbu_ac_uk/Documents/3905438_Dissertation.docx#_Toc136348885

x

List of Tables

Table 1 - Front-end Framework Comparison .. 27

Table 2 - Risk Assessment ... 32

Table 3 - Model Requirements .. 33

Table 4 - Front-end Requirements ... 34

Table 5 - Comparison Results Table (224x224) ... 67

Table 6 - Comparison Results Table (128x128) ... 69

Table 7 - Initial Hyperparameters .. 74

Table 8 - Comparison between Tuning Attempts 1 and 2 ... 76

Table 9 - Comparison between Tuning Attempts 1, 2, and 3 .. 78

Table 10 - Unmet Requirements .. 90

xi

Glossary

• R-CNN Region with Convolutional Neural Network

• CNN Convolutional Neural Network

• ANN Artificial Neural Network

• DNN Deep Neural Network

• SPI Submersible Pump Impeller

• AI Artificial Intelligence

• CV Computer Vision

• LCD Liquid Crystalline Display

• LLP Low-Level Process

• MLP Mid-Level Process

• HLP High-Level Process

• SLAM Simultaneous Localization and Mapping

• ML Machine Learning

• DL Deep Learning

• AVI Automated Visual Inspection

• YOLO You Only Look Once

• CAM Class Activation Mapping

• TP True Positive (rate)

• TN True Negative (rate)

• FP False Positive (rate)

xii

• FN False Negative (rate)

• SSD Single Shot Detector

1

1. Introduction

The main output of this project is to develop and train a deep learning model based on the existing

R-CNN architecture, which can process images of submersible pump impellers and identify,

categorize, and localize casting defects.

1.1 Background

For approximately every thousand tons of metallic castings, seventy-five tons must be re-melted

due to defects [1]. The average lifespan of a metal is less than 10 years. Metal production accounts

for roughly 8% of global greenhouse gas emissions [2], so detecting defects earlier on in the

manufacturing process means: most metals won’t need to be re-melted and cycled through the

process again. This reduces greenhouse gas emissions, metal wastage, and the necessity to mine

more. Accordingly, Helbig states: “the longer we use metals, the less we need to mine.”

Using this artificial intelligence (AI), defects are detected earlier on, which will significantly reduce

the chance of cast metals being lost to landfills or recycling plants, which currently accounts for

84% of cumulative metal loss globally [2].

In comparison to surface defect detection of other surfaces, such as liquid crystalline displays

(LCDs), accurate detection of defects on metallic surfaces is much more prone to error, due to the

high reflectance, resulting in skewed outcomes by slight changes in lighting conditions [3]. As a

result, more advanced detection methods must be incorporated in place of traditional image

processing techniques to increase precision and reliability across a wider range of environmental

conditions.

2

According to Tabernik et al. (2020), deep learning techniques have become the best approach for

this task. The leading factors are accuracy and the reduced need for domain knowledge required

to identify and categorise anomalies in images. Despite their overall suitability in surface

detection problems; the processing power and storage requirements of convolutional neural

networks (CNNs) are significantly higher, majorly limiting hardware flexibility [4]. The mechanism

is a ‘black box’, which makes it next to impossible to accurately troubleshoot specific issues.

Although in some domains – such as data mining applications with a high monetary stake (i.e.,

banking) – the lack of transparency in artificial neural networks (ANNs) is unacceptable. However,

in the context of the scope of this report, this is not an issue as there is no chance of the

architecture causing further revenue loss; its effectiveness is measured by its minimisation of loss

– as will be discussed in Aims and Objectives.

1.2 Research Motivation

It is no secret that AI is one of the most exciting and controversial technological advancements of

the 21st century. As of 2022, the global AI market is valued at over $136 billion. This is projected

to increase by over thirteen-times over the next 8 years. By 2025, as many as ninety-seven million

people will work in the AI sector, and 83% of companies claim that AI is a top priority in their

business plan. Netflix alone makes $1 billion annually from automated personalised

recommendations [5].

Many industries are trying to adopt Industry 4.0 and AI techniques to improve their production

quality and efficiency. The process of quality control has remained unchanged for decades until

recent developments in automated defect detection solutions. The introduction of systems

3

utilising more advanced technologies has greatly improved the accuracy of anomaly detection in

manufacturing; however, these newer systems and their underlying algorithms (as previously

mentioned) largely require a high degree of computational power, and a tedious calibration

process [6]. Hence in this research, an efficient and lightweight solution is proposed to overcome

this challenge.

1.3 Research Questions

This project aims to provide an answer to the following questions:

• How do the accuracy and speed of existing deep learning techniques compare to a novel

deep neural network for surface defect detection problems?

• What are the important characteristics of an efficient and user-friendly surface defect

detection application?

• How can R-CNN be adapted to surface defect detection to make it faster at an acceptable

accuracy?

1.4 Aim and Objectives

1.4.1 Project Aim

The main aim of this project is to reduce the loss in revenue in the metal casting industry caused

by casting defects: by providing companies and organisations with a deep learning (DL)

architecture, which could be used by employees to quickly scan and log the defects. This data

could be collated and statistically analysed to identify the most effective actions to reduce the

frequency of the most commonly occurring defects.

4

1.4.2 Objectives

• Research existing defect detection solutions: Investigate and evaluate solutions provided

using either traditional techniques or deep learning methods.

• Obtain and divide a dataset: Find a relevant dataset (images of the surface of SPIs) with

enough samples and divide that into training and validation subsets.

• Create labels for the dataset: Using appropriate software, create categories for types of

casting defects and manually classify them in images to aid in model training.

• Create a design for the neural network: Plan out the number of layers, arrangement, and

number of output parameters for the network, based on the R-CNN architecture.

• Program the network: Translate the network design to code, using relevant languages,

technologies, and modules.

• Train the network: Run the neural network using the training dataset as the input.

• Assess the accuracy of the network: Run the neural network using the validation dataset

as the input and evaluate the accuracy of detection and categorisation.

• Re-evaluate the design: Repeat training and testing and modify the design until the

accuracy is sufficient.

• Create a functional front-end: Provide a graphical user interface for user interaction with

the model.

1.5 Research Scope

The project will consist of the development of a deep learning-based architecture derived from

training, testing, and validation using a publicly available dataset of images consisting of the front

5

surface of submersible pump impellers. There will be a web application that will show a live feed

of a camera, which will display bounding boxes around the defects with an appropriate categorical

label.

1.6 Report Structure

This report will be structured accordingly: a Literature Review section, in which existing research

on topics within the scope will be discussed and explored; a Technical Review section, which will

explore and compare relevant technologies for the development of the project; a Research

Methodology section, which outlines the research and development methodology, as well as

defining requirements; a Results and Discussion section, providing an overview of the output of

the project and discussing findings; and a Conclusion and Further Work section, which verifies

the study, outlines limitations encountered, and an overview of potential further work.

6

2. Literature Review
2.1 Image Processing

According to Petrou (2010), the purposes of image processing are image enhancement,

compression, restoration, and feature extraction. Apart from compression, these processes all

aim to make a digital image more interpretable by either human or automatic analysis [7]. Image

enhancement is an important task in computer vision applications, as it provides necessary pre-

processing to facilitate the improvement or removal of low-quality data – increasing the

effectiveness of further processing such as feature extraction.

Figure 1 - Contrast Enhancement Example using Histogram Equalization [89]

7

As can be observed in the figure, the contrast of the image on the right has been enhanced. As

stated by Patel et al. (2013), histogram equalization is not the most effective method for contrast

enhancement, however, the benefit of using similar low-level techniques is readily apparent.

The techniques used to process images can be classified into 3 main categories: low-level, mid-

level, and high-level. Low-level processes (LLPs) and Mid-level processes (MLPs) both accept an

image as input; however, the output for LLPs is an image, and the output for MLPs is a set of

attributes. High-level processes (HLPs), on the other hand, take a set of attributes and output

understanding [8].

2.1.1 Low-Level Processes

The purpose of this level of process is to carry out two main divisions of tasks: Image

Enhancement, and Image Restoration [9]. Enhancements include operations such as contrast or

brightness adjustment, or other techniques focused on highlighting image details, which produce

subjective results. Image restoration, on the other hand, outputs an objectively measurable

result, as the issue of image degradation can be addressed using a mathematical or probability-

based model [10].

2.1.2 Mid-Level Processes

According to Sood, these processes are responsible for Object Recognition and Segmentation;

however, this is contradicted by Azimi, who believes these tasks should be categorized as high-

level processes. Instead, the tasks belonging to this class are Transforms and Compression [9].

8

2.1.3 High-Level Processes

These processes are most associated with computer vision (CV), and as such – in accord with

Azimi – the tasks at this level are Segmentation, Feature Extraction, and Classification or

Recognition, which will be further discussed later in sections 2.3 and 2.4.

2.2 Data Pre-processing

Pre-processing of images for DL applications is necessary to successfully train a network because

the characteristics of the defect and non-defect regions are not easily discernible. Due to the

presence of noise in unprocessed images, they do not ensure the successful training of a DL model

[11]. This is supported by Ranganathan (2021), who suggests that although DL systems are

capable of being trained using noisy data, it may have an impact on the applications’ accuracy

[12].

Several data pre-processing techniques are commonly used in machine learning CV projects:

including but not limited to grayscale conversion, normalisation, data augmentation, and image

standardization. They are used to achieve a higher accuracy whilst also reducing a model’s

complexity [13].

9

The figure above demonstrates the range of learning techniques, pre-processing techniques, and

their respective accuracies. The table illustrates the applicability of pre-processing techniques and

how they can be utilised in both image and standard data DL problems.

2.3 Feature Extraction Methods

The goal of feature extraction, a crucial stage in the development of any pattern classification, is

to obtain the pertinent data that defines each class and is performed after the data has been pre-

processed through techniques previously discussed. This procedure creates feature vectors by

extracting appropriate features from detected objects; this feature vector represents the identity

of a class of objects [14]. Image features can be divided into local features and global features.

They can be defined accordingly [15]:

• “Local features: Features calculated over the results of subdivision of the image band on

image segmentation or edge detection.”

Figure 2 - Section of a Table Showing DL based Applications with Pre-processing Techniques [12]

10

• “Global features: Features calculated over the entire image or just regular sub-area of an

image.”

According to Kumar & Bhatia (2008), a good feature set includes discriminating data that can

separate one object from others. To avoid producing various feature codes for objects belonging

to the same class, it must be as stable as possible. The features chosen should be a limited subset

whose values effectively distinguish between patterns of various classes while being comparable

for patterns belonging to the same class.

There are many feature extraction methods, which must be chosen based on several factors:

computational complexity, implementation difficulty, adaptability to translated objects and

shapes, etc. [16]. However, these feature extraction methods are only relevant whilst considering

traditional analysis. Deep learning is now widely used for image and video analysis, and it has

received recognition for being able to analyse raw image data without first extracting any features

from it [17]. In this regard, DL solutions provide a large advantage over traditional computer vision

systems, in that there is greater accuracy of classification, segmentation, object detection, and

Figure 3 - Feature Extraction Demonstration [91]

11

Simultaneous Localization and Mapping (SLAM). Kernels, often referred to as filters, are used by

CNNs to identify features, such as edges, throughout a picture [18].

The figure below shows an overview of the difference in workflow comparing traditional CV to

deep learning CV.

2.4 Surface Defect Detection Methods

The main goal of surface defect detection – also referred to as automated visual inspection (AVI)

– is to use classification techniques to group defects into specified classes [19]. There are two

categories of methods that are going to be compared: traditional approaches, and deep learning

approaches. The benefits and drawbacks of both will be compared, in addition to their sub-

categories.

Figure 4 - Traditional (a) vs. Deep Learning (b) Computer Vision Workflow [18]

12

2.4.1 Traditional Methods

According to Kumar & Bhatia (2008), feature extraction and decision-making techniques should

be divided into three groups: statistical, spectral, and model-based. This has more recently been

accepted, but modified; Sun et al. (2018), believe the techniques should be divided into statistical

methods, filter-based methods, model-based methods, and learning-based methods.

Statistical Methods

The statistical approach involves developing a mathematical model by applying mathematical

statistics and probability theory [20]. Histogram properties, co-occurrence matrices,

mathematical morphology, and local binary patterns are common statistical techniques (LBP)

[21]. These methods have a low computational cost and can be highly accurate, however, the

accuracy over a wide range of scenarios can be detrimentally affected by a variety of factors such

as grey value, noise, and irregularities in texture [20].

Filter-based (Spectral) Methods

To extract features, these methods mathematically transfer data from the spatial domain to the

frequency domain [21]. The filter-based methods considered by Sun et al. (2018) include spatial

domain, frequency analysis, Gabor transform, wavelet transform, and multiscale geometric

analysis. Modern high-dimensional datasets require the development of faster algorithms, and as

a result, spectral approaches have grown in popularity [22].

13

Model-based Methods

Ren et al. [21] state that “model-based approaches construct representations of images by

modeling multiple properties of defects”. The Markov random field (MRF) and the auto-regressive

model are the most often used model-based techniques. For modern purposes, auto-progressive

models are becoming more favoured due to a lower computational cost compared to non-linear

models [21].

Learning-based Methods

Derived from statistical pattern recognition theories, linear support vector machine (SVM)

algorithms have been in use for over two decades. Compared to Naïve Bayes and neural networks,

the SVM classification approach is thought to be a better option for noisy datasets when

considering accuracy and computational complexity [23].

2.4.2 Deep Learning-based Methods

Deep learning approaches have rapidly become the standard for AVI, which can be attributed to

the efficiency of its feature extraction capabilities. There are a variety of DL methods that are in

use for a range of tasks, however, all the most used rely on CNNs [24]. According to Yang et al.

(2019), currently, the most widely used object identification techniques are the Faster R-CNN,

You Only Look Once (YOLO), and Single Shot Detector (SSD) – which are all CNN-based. R-CNN is

a specific type of CNN that is specialised for object detection in images, as opposed to general

image classification [25]; hence it is suitable for defect detection, as defects can be classified as

objects.

14

The figure below outlines the overall structure of a very basic CNN. The main features of a CNN

are convolutional layers, pooling layers, fully connected layers, dropout layers, and activation

functions [26].

2.5 Surface Defect Detection Applications

Overall, the employment of an AVI system reduces the loss of revenue compared to manual

inspection not only by reducing the frequency of product returns or waste, but because improving

product quality can lead to more sales and revenue, customer confidence and trust, repeat

business, and even improved brand reputation [27].

According to Ravikumar et al. (2011), machine vision is mostly used for visual inspection of

component surfaces. However, the applications of this technology cover a wide range of domains

Figure 5 - Basic CNN Network Architecture [92]

15

and industries. AVI systems have a wide range of usage; in the medical field to detect defects in

cardiovascular stents, in food processing to grade lentils, and the manufacturing of glass and

plastics, among others [28].

2.6 Existing Deep Learning Models

2.6.1 VGG16 vs Resnet50 [29]

In a study exploring the application of convolutional neural networks (CNNs) for classifying affect

states, specifically facial expressions, the performance of two transfer learning models, VGG16

and ResNet50, were compared. The experimental results demonstrated validation accuracies of

96.8% for VGG16 and an impressive 99.47% for ResNet50 [29]. These findings showcase the

superior performance of ResNet50 in accurately identifying and classifying facial expressions,

indicating its potential as a powerful tool in affect state recognition tasks.

The study also included the calculation of precision and recall as additional performance

measures. The corresponding results for precision and recall can be observed in the subsequent

figures, providing a comprehensive evaluation of the models' performance in terms of these

metrics. These results offer valuable insights into the precision (ability to avoid false positives)

and recall (ability to capture all relevant positives) of the models, further enhancing the

understanding of their classification capabilities.

16

The results presented in the tables demonstrate the overall effectiveness of both models in

accurately identifying images from each class. However, a comparison between the two models

reveals that VGG16 had a slightly lower performance compared to ResNet50, particularly in terms

of false positives.

Figure 7 - VGG16 vs ResNet50 Precision Table [29]

Figure 6 - VGG16 vs ResNet50 Recall Table [29]

17

In terms of precision, VGG16 demonstrated a higher rate of false positives, particularly for the

'disgust' and 'happy' classes, with precision scores of 0.88 and 0.96, respectively. This indicates

that VGG16 tended to incorrectly classify negative instances as positive for these specific classes.

In contrast, ResNet50 achieved better precision, suggesting a lower rate of false positives for

these classes.

Regarding recall, the two models exhibited relatively similar performance, with average recall

values of approximately 0.96 for VGG16 and 0.98 for ResNet50. However, it's worth noting that

VGG16's recall value for the 'sad' class, scoring 0.88, stands as somewhat of an outlier. This

suggests that a lower proportion of 'sad' images were correctly identified by VGG16 compared to

other classes.

Considering both precision and recall provides a more comprehensive assessment of the models'

performance. While VGG16 struggled with false positives, particularly for 'disgust' and 'happy', it

still achieved a relatively high average recall. On the other hand, ResNet50 exhibited better

precision and consistent recall rates. These observations shed light on the models' strengths and

weaknesses in accurately classifying the different image classes.

A possible explanation for some classes yielding lower rates is an imbalance in image class

distribution, as can be seen in the following figure, which contains the number of images

belonging to each class.

18

2.6.2 VGG16 vs InceptionV3 vs ResNet50 [30]

A study compares the performance of various models, including InceptionV3, VGG16, and

ResNet50 in the classification of COVID-19 and pneumonia [30]. The dataset used for the study

consisted of 1536 chest X-ray images depicting COVID-19 cases and 5629 images displaying

pneumonia cases. However, it's worth noting that the dataset was unbalanced, with a larger

number of pneumonia images. To address this issue, under-sampling techniques were employed

to balance the dataset, ensuring fair comparison among the different classes. The results of the

study are shown in the figure below and are discussed on the next page.

Figure 8 - Expression Dataset Distribution [29]

Figure 9 - COVID-19 and Pneumonia Model Performance [30]

19

In terms of overall performance, VGG-16 emerged as the top-performing model among the three

evaluated models, achieving a remarkable validation accuracy of 100%. In a separate study

conducted by Shazia et al. (2021), focusing on the classification of COVID-19, pneumonia, and

normal images, VGG16 exhibited the highest overall accuracy, reaching an impressive 95.88%. On

the other hand, InceptionV3 and ResNet50 achieved slightly lower validation accuracies of 99.63%

and 99.82%, respectively.

Interestingly, all three models demonstrated excellent performance even with a relatively low

number of epochs. InceptionV3 and ResNet50 achieved optimal accuracy in just 3 and 4 epochs,

respectively, while VGG-16 required the most epochs, specifically 21, to achieve optimal results.

Despite the variation in the number of epochs required, each model demonstrated their

effectiveness in accurately classifying the images.

These findings highlight the superior performance of VGG-16 in the given classification task and

emphasize the efficiency of InceptionV3 and ResNet50 in achieving optimal accuracy with fewer

epochs.

20

2.7 Gap Analysis

As stated by Zheng et al. [21], “manual surface inspection methods performed by quality

inspectors have the disadvantages of low efficiency, high labor intensity, low accuracy, low real-

time performance, etc.” Manual visual inspection methods necessitate a significant amount of

time and are very subjective. AVI approaches are intended to supplement or completely replace

human judgement to overcome the limitations of human inspection [31], however, this is yet to

be improved; according to Damacharla (2021), due to the training requirements and inaccuracies

associated with AVI systems, most steel production sectors continue to use manual visual

inspection.

To remedy this situation, an AVI system with the following features must be developed: rapid

detection speed, sufficiently high accuracy, a high level of abstraction to reduce the cost of

employee training, and an ANN which can be precisely trained with a minimal dataset.

21

3. Technical Review

The purpose of this technical review is to evaluate and select relevant technologies required for

different steps in the development of the DL model and web application. This review has been

divided into three main sections: Data Acquisition Tools, Data Analytics Tools & Platforms, and

Frontend. However, Data Analytics Tools & Platforms has been further partitioned into Open

Source and Commercial options. Using a set of criteria derived from research into relevant

technologies, the suitability of each will be contrasted and compared.

3.1 Data Acquisition Tools

The process of measuring aspects of the physical environment, such as pressure, temperature,

sound, and electricity, is known as data acquisition [32]. This is accomplished by using a variety of

sensors that capture analogue signals from the environment and convert them to digital signals

[32]. In the context of machine learning, data acquisition tools relate to sensing hardware and

systems used to acquire data to form a dataset, such as a camera. However, due to the scope of

this project, it is infeasible to use manual data acquisition methods; it instead utilizes a dataset

found on Kaggle, an open dataset repository. Despite this, the components of a data acquisition

system are discussed in this section, as they are relevant to the research.

22

3.1.1 Hardware Components

Analogue-to-Digital Converter

An analogue-to-digital converter (ADC) is a device that transforms analogue signals into digital

signals, such as sound captured by a microphone or light entering a digital camera [33]. This

component is vital in allowing digital systems to communicate with real-time analogue signals. An

ADC provides a data acquisition system with the ability to collect information from the real world,

which is usually in the form of a voltage, which is then converted to a binary number [34].

Sensors

Sensors are another important aspect of a data acquisition system. Their role is to convert

physical properties such as temperature, pressure, humidity, and light intensity into analogue or

digital electrical signals [35]. They are a subset of transducers, which are broadly defined devices

that convert energy from one form to another [36].

3.1.2 Software Components

WINDAQ

WINDAQ is software used for real-time data acquisition, signal processing, and data analysis. It

provides a platform for acquiring and analysing data from a variety of sources, such as USB and

PCI devices which may utilise sensors and analogue-to-digital converters [37].

ActiveX

Microsoft's ActiveX framework enables programmers to construct reusable software

components. Numerous applications, including data-acquisition systems, can use these

components [38].

23

3.2 Data Analytics Tools & Platforms (Backend)

This section of the technical review covers all the technologies required to develop & train the

model, as well as to develop other elements of the backend such as performance measurement.

3.2.1 Open Source

Python vs R (Programming Language)

R is a programming language specifically purposed for statistical computation and graphics [39],

whereas Python is a general-purpose high-level programming language with large extendibility in

the form of modules. Python is more versatile and consistent than R due to its broad community

support, accessible documentation, and code standardisation. Additionally, since Python is a

general-purpose language; it can seamlessly integrate with other development tasks, notably for

this project the creation of a web application utilizing one of its robust third-party frameworks. R,

on the other hand, despite being a difficult language to learn, offers more models for statistical

analysis [40].

OpenCV

OpenCV is a computer vision library compatible with several programming languages, such as

C++, Python, and MATLAB [41]. In Python, OpenCV is a module capable of image processing and

facilitating CV tasks. In the context of the project, it provides the ability to perform data pre-

processing and annotate images for use in the frontend.

24

TensorFlow vs PyTorch

Both TensorFlow and PyTorch are deep learning frameworks that can utilise a discrete GPU to

perform tasks [42]. Due to their ability to use parallel processing, GPUs are more suited to

complex tasks such as the training of a deep-learning network. For this project, training will take

place on a computer equipped with an NVIDIA RTX 3070, which will significantly reduce training

time when combined with a GPU-accelerated framework.

TensorFlow, developed by Google, is a much more mature framework than PyTorch, with superior

debugging and visualisation capabilities. PyTorch, on the other hand, takes a more 'pythonic'

approach, making it easier for Python developers to use [42]. However, TensorFlow includes a

package called Keras, which is a high-level API for deep learning. It can be used to write more

concise, readable code while retaining the TensorFlow GPU back-end's power.

NumPy vs Pandas

Through the virtue of locality of reference, NumPy provides a Python array implementation that

is 50 times faster than native Python lists. It also provides a set of mathematical functions for

image pre-processing, such as the Fourier transform [43]. TensorFlow includes NumPy as an API,

meaning NumPy structures can be easily integrated into a TensorFlow environment without

adding complexity [44].

Pandas has a broader set of capabilities than NumPy, but it is more focused on delivering insights

into big data problems than image data. However, Pandas includes a 'DataFrame' structure, which

is a 2D array implementation that could be used in storing image data. However, a NumPy array

outperforms Pandas DataFrames when working with lesser than five-hundred-thousand rows

[45]. Furthermore, because Pandas lacks TensorFlow integration, NumPy is the superior choice.

25

3.2.2 Commercial

MATLAB

MATLAB is a high-level programming platform and language designed for engineers and scientists

[46]. It has many features and can complete most of the essential tasks; nevertheless, it is

unsuitable for this project due to its steep learning curve, and for the sake of integration

simplicity, it is a better choice to use only one programming language for development.

LabelBox

LabelBox is a data training platform most typically used for annotating or labelling data [47], which

can then be exported and utilised to train a TensorFlow (or other ML) model more quickly.

In conclusion, the primary back-end technologies used were Python, OpenCV, TensorFlow, Keras,

and NumPy. It was also planned to use LabelBox; however, after evaluation, it was deemed

infeasible to manually annotate a sufficient-sized subset of a dataset.

3.3 Front-end Dashboard and Visualization Platforms

As a proof-of-concept, an interface in the form of a barebones web application will be developed.

Due to the impracticality of acquiring samples of defective SPI castings, the front-end will be

demonstrated using images from the dataset. Since Python is the most suitable language for the

project, only Python frameworks and libraries will be considered in this section.

26

3.3.1 Flask

Flask is a microframework for developing web applications and APIs. It requires little boilerplate

code, resulting in a codebase that is very concise and readable, allowing for rapid development.

Flask, like Python, has a multitude of third-party libraries for a wide range of tasks, as well as

robust community support. It is also extremely fast and comes with a development server, which

eliminates the need for a separate web server.

3.3.2 FastAPI

FastAPI is a Python web framework with excellent documentation and features. However, unlike

Flask, it lacks an integrated development server, necessitating additional steps to begin

programming. Furthermore, its design is focused on producing APIs rather than web apps [48].

3.3.3 Django

Django is a full-stack framework suited to building complex web applications and is widely

adopted in commercial applications. It allows for rapid, organized development; however, it is

excessive for this project.

27

3.4 Comparison of Front-end Technologies

The front-end technologies were evaluated based on six criteria: user adoption, community

support, project suitability, the inclusion of a development web server, the speed of

development, and prior knowledge of the framework. Additionally, these criteria were weighed

by determining whether it was deemed required or optional.

Flask and Django had the highest adoption rate, with FastAPI having fewer online resources

referencing it, likely because it is a newer framework. In terms of community support, Flask had

the highest number of online resources and forum responses compared to the other two

frameworks. However, it was found that Flask and FastAPI were more suitable for the required

task as they are minimal frameworks, as opposed to Django’s bundled and complex nature. Based

on these three required criteria, Flask scored the highest, as can be seen in the table below.

Table 1 - Front-end Framework Comparison

Importance Description Flask Django FastAPI

Required Adoption Highest Highest Lower

Required Community Support High Medium Low

Required Project Suitability Highest Medium High

Preferred In-built Web Server Yes Yes No

Preferred Development Speed High High High

Preferred Prior Knowledge Highest Medium Medium

In conclusion, Flask was chosen as the front-end framework.

28

4. Research Methodology
4.1 Overview

4.1.1 Research

Research for this project primarily utilised an experimental design, however, some analytic

methods were also used. In addition to the experimental output, pre-conducted comparisons of

ML models have been analysed (in the Literature Review) to provide further insight and to guide

the development of the model.

The goal of the research was to create a model which is sufficiently accurate whilst providing an

adequate level of efficiency, with relevant performance measures and visualisations used to

evaluate and improve.

Dataset

The dataset used for model training, development, and comparison was obtained externally from

Kaggle [49]. This dataset played a crucial role in conducting the research and gathering the

research output. It consists of 1300 images, each with a resolution of 512x512 pixels, representing

the front surface of submersible pump impellers. Out of the total images, 781 of them are labelled

as 'defective', indicating that these impellers have some kind of damage or flaw. The remaining

519 images are labelled as 'ok', implying that these impellers are in good condition without any

noticeable defects. The dataset encompasses a diverse range of defects that can occur in SPIs.

These defects can include various types of damages or abnormalities that affect the impeller's

functionality or performance. Examples of such defects may include cracks, erosion, corrosion,

29

wear, imbalance, or any other anomalies that could potentially impair the impeller's efficiency,

as can be ascertained from the figure below.

Figure 10 - Dataset Sample

30

Pre-processing

Two pre-processing techniques were employed in the analysis. The first technique involved

rescaling the pixel values of the images to normalize them within a range of 0 to 1. This process

of rescaling ensured that all pixel values fell within a standardized and consistent range,

facilitating subsequent computations.

The second pre-processing technique focused on resizing the images. By downsizing the images

to a smaller resolution, computational efficiency was improved. This resizing step reduced the

dimensions of the images while retaining important features and patterns, enabling faster

processing during model training and inference.

4.1.2 Development

The creation of this deep learning model necessitated the use of an agile development

methodology; the pre-processing, prediction, comparison, and front-end modules also benefitted

from the use of such methodology. The reason for this is that modelling such an architecture can

require many iterations with constantly changing specifications to fine-tune the model's

parameters to an acceptable level of efficiency, speed, and accuracy. Additionally, refining the

other modules required modifications based on changes to the structure of the model.

The project management methodology used was based on Kanban because the workflow

structure is much more flexible than Scrum, allowing for more easily permitted changes to the

development process. However, because there was only one developer on the project, Kanban

was only used loosely, as the methodology is designed for larger projects and teams; Kanban

features were used as required.

31

Jira was the project management tool used to plan and track the project's progress. It has features

like a Kanban board, issue linking to source control, and a 'roadmap,' which is similar to a Gantt

chart but designed for agile methodologies [50]. GitHub was additionally used for code versioning.

Action Plan

The action plan for this project was divided into six agile epics, as observable in the figure above:

• Setting up the development environment

• Designing the model

• Designing the web application

• Implementing, training, and testing the model

• Implementing the web application and testing

• Writing the report

The roadmap includes a timeframe for each epic based on reasonable estimation after task

analysis. It should be noted that the implementation of the backend was allotted the most time

– two months. This is regarding the process being a series of rapid prototyping, testing, and

redesigning iterations. The implementation of the frontend was only allotted two weeks because

of familiarity with the front-end framework. The two design phases were only given two weeks

Figure 11 - Jira Roadmap

32

to complete, as it was clear that a large portion of the design would take place during the

implementation.

Risk Assessment

To ensure a comprehensive and successful project, a risk assessment was undertaken to help

identify and avoid potential blockers. The results for which can be viewed in the table below.

Table 2 - Risk Assessment

Hazard Affected Group(s) Existing Controls Risk

Development & report take
more time than expected

Author • Plan for the worst-
case scenario

• Follow the roadmap
as closely as possible

• Use Jira effectively

Low

Project workload causing
burnout and low productivity

Author • Realistic goals and
timeframes set

• Follow Jira roadmap

Low

Speed and efficiency of
model insufficient

Author • Continuous cycles of
iterative development

Low

Product strays from the
scope of the project

Author • Follow Jira roadmap

• Intermittently refer to
report scope and
objectives sections

Low

Losing track of code history Author • Use git/GitHub
version control

• Refer to Jira issues

Low

The program doesn’t work as
intended (bugs)

Author • Frequent and
thorough unit testing

Low

The computer or graphics
card becomes damaged

Author • Use a surge-protected
extension cable

• Keep liquids away
from the
computer/desk

Low

The subsequent sections (4.2 to 4.6) discuss the methodologies implemented for each aspect of

the research.

33

4.2 Requirements

The requirements are divided into model requirements and front-end application requirements.

For each of these, the functional and non-functional requirements are listed in the respective

subsequent tables, with justification provided for each.

4.2.1 Model

Table 3 - Model Requirements

Requirement

ID

Requirement

Type

Description Justification

M-FR1 Functional The model shall be able to

classify surface defects of

SPI castings in images.

The primary goal of the

deep learning model is to

accurately identify and

classify surface defects for

quality control purposes.

M-FR2 Functional The system shall support

multiple classes of surface

defects.

Surface defects can vary in

type and severity, so the

model should be able to

classify different defect

categories.

M-FR3 Functional The model shall accept

input images in various

formats (e.g., JPEG, PNG).

The model should handle

different image formats

commonly encountered in

real-world scenarios.

M-FR4 Functional The model shall achieve a

minimum classification

accuracy of 90%.

High accuracy is crucial to

ensure reliable detection

and minimize false positives

or false negatives.

M-NFR1 Non-functional The model shall process an

image for defect

classification within 1

second.

Real-time or near-real-time

processing is necessary to

enable efficient defect

detection in production

environments.

34

M-NFR2 Non-functional The model shall be able to

handle variations in lighting

conditions and camera

angles.

The model should be able to

detect defects accurately,

regardless of lighting

variations or different

capture angles.

M-NFR3 Non-functional The model shall be capable

of handling a large number

of images for batch

processing.

The model should be

capable of processing a

significant number of

images efficiently to support

high-volume defect

detection.

M-NFR4 Non-functional The model shall provide

insights into the decision-

making process.

Understanding how the

model arrives at its

classifications is important

for building trust and

debugging potential issues.

4.2.2 Front-end Application

Table 4 - Front-end Requirements

Requirement

ID

Requirement

Type

Description Justification

F-FR1 Functional The front-end shall provide

a user interface for

uploading images for defect

detection.

Users should be able to

easily upload images from

their devices to initiate the

defect detection process.

F-FR2 Functional The front-end shall display

the classification results for

each uploaded image.

Users need to see the

detected surface defects

and their corresponding

classifications for further

analysis and decision-

making.

F-FR3 Functional The front-end shall support

real-time streaming of

Real-time streaming allows

for continuous monitoring

35

images from a connected

camera.

and immediate detection of

defects in production

environments.

F-FR4 Functional The front-end shall provide

a visual representation of

the detected defects

overlaid on the original

image.

Visual overlays help users

locate and understand the

precise location and nature

of the detected defects.

F-FR5 Functional The front-end shall allow

users to download or save

the results of defect

detection for further

analysis.

Users may want to save or

export the results for

reporting, documentation,

or additional processing

purposes.

F-NFR1 Non-functional The front-end shall have a

UI that is simple and easy to

use.

Users may simply access and

interact with the application

without difficulty or

irritation because there is a

user-friendly design.

F-NFR2 Non-functional The front-end shall provide

a smooth and responsive

user experience.

Even when executing

difficult image analysis

tasks, users want the

programme to respond

promptly and offer

frictionless interactions.

F-NFR3 Non-functional The front-end shall be

suitable for widely used

web browsers (such as

Chrome, Firefox, and

Safari).

To maximise accessibility

and user reach, the

application should function

flawlessly on a variety of

browsers.

F-NFR4 Non-functional The front-end shall adapt to

various screen dimensions

and resolutions.

Regardless of the user's

device or screen size, the

application should offer a

consistent an optimised

experience.

36

4.3 ML Models

The ML models selected for use in comparison were VGG-16, InceptionV3, and ResNet50. They

were chosen based on their suitability, efficiency, and their inclusion in Keras as pre-trained

models [51], allowing for a fair comparison. Their designs and characteristics are discussed below.

4.3.1 VGG-16

The CNN-based model composed of 16 convolution and fully connected layers performs strongly

in image classification tasks. According to Rohini (2021), VGG-16 is still considered to be one of

the best models for computer vision since its inception in 2014. It performs well in capturing fine-

grained details; however, it is computationally expensive due to its large number of parameters.

Its architecture is outlined in the figure below.

Figure 12 - VGG-16 Architecture [98]

37

4.3.2 InceptionV3

The InceptionV3 model provides a balance of model size and computational efficiency, whilst

retaining excellent performance in image classification and defect defection tasks. To yield this

efficiency, its architecture utilizes Inception Modules, which were primarily designed as a solution

to the issue of computational expense and overfitting; they rely upon the principle of using

multiple filter sizes within the same layer [52]. The architecture for the model can be observed in

the figure below.

4.3.3 ResNet50

Deep neural networks often encounter the difficulty of training past a certain number of

iterations; this is because of the vanishing gradient problem. ResNet50 provides a solution for this

problem through the introduction of skip connections, which provide shortcuts for an input to an

activation layer [53], and make model training less computationally intensive. It also performs

well in image classification and has been widely used for defect detection tasks. In one such defect

Figure 13 - InceptionV3 Architecture [99]

38

detection task, hot-rolled steel strip defect detection using ResNet50 – along with other methods

– achieved a 94.11% accuracy rate [54]. The model’s design can be derived from the figure below.

4.4 Performance Metrics

The metrics decided upon for analysis were accuracy, precision, recall, and F1-score. This decision

was made based on the need for a comprehensive evaluation of the model's performance in a

binary classification task. Each of these metrics provides unique insights into different aspects of

the model's performance, allowing for a well-rounded assessment.

All these metrics rely upon the involvement of true positive, true negative, false positive, and

false negative rates, which are respectively the counts of correctly identified positives, correctly

identified negatives, incorrectly identified negatives, and incorrectly identified positives. A

commonly used method for summarizing these rates is a confusion matrix, which can be

visualised in the figure below.

Figure 14 - ResNet50 Architecture [100]

39

The matrix allows for a detailed analysis of model performance by providing insights into the types

of errors it makes. The metrics mentioned above are derived from the rates defined in the

confusion matrix. Their respective formulae along with a description of their use cases and

relevance to this project are covered by sections 4.4.1 to 4.4.4.

4.4.1 Accuracy

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵

Accuracy is a commonly used metric that measures the overall correctness of predictions and

provides a reasonably accurate indication of its performance; however, it can be misleading in

imbalanced datasets where classes are unequally represented [55]. Nevertheless, there was no

need to take this weakness into account, as the dataset utilized for this project was appropriately

balanced; approximately 60% of the images depict 'defective' components, while the remaining

40% represent 'ok' components.

Figure 15 - Confusion Matrix [56]

40

4.4.2 Precision

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷

Precision, on the other hand, measures the correctness of positive predictions by calculating the

ratio of true positives to the total number of positive predictions. This metric can be particularly

useful to detect when the number of false positives is high, acting as an indicator of the model’s

ability to avoid false alarms.

4.4.3 Recall

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵

Recall, also known as sensitivity, measures the proportion of actual positive instances correctly

identified by the model. It is used to assess the model’s ability to capture all positive instances

and can be valuable when the cost of false negatives is high.

4.4.4 F1-Score

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 = 𝟐 (
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
)

F1-score is a combined metric that builds upon its simpler components: precision and recall. It

represents the harmonic mean of these two components and produces reliable results even when

dealing with imbalanced data, in addition to giving extreme values a lesser weighting [56]. As it is

41

an average of the two metrics, an F1-score will be low when both are low, high when both are

high, and medium when one is high, and one is low [57]. It provides a single value that summarizes

the performance of the model, considering both aspects of class-wise accuracy.

4.4.5 Summary of Metrics

Using multiple metrics to measure and evaluate the performance of ML models is crucial. Each

metric has its advantages and limitations, providing valuable insights into specific aspects of a

model's strengths and weaknesses. For instance, the F1-score offers a balanced perspective of

precision and recall, but it presents an aggregated measure that may lack intuitive

interpretability; whilst accuracy, the simplest measure, provides a general overview of the

performance, but offers less value when the dataset is unbalanced.

4.4.6 Implementation

This section explains the Python-based approach used to extract model performance metrics. To

ensure organized code structuring, various tasks were separated into distinct scripts. In this case,

the 'comparison.py' script was dedicated to comparing performance metrics. The primary

objective of this task was to generate predictions using models trained on the validation dataset

and assess their performance by comparing the predicted labels with the true labels of the

images. This label comparison enabled the calculation of key metrics such as accuracy, precision,

recall, and f1-score, which are essential for evaluating the model's effectiveness. These metrics,

as mentioned above, provide valuable insights into the model's predictive capabilities.

42

To ensure fairness in the evaluation process, an additional step was taken to maintain consistency

among the models; a dedicated function was implemented within the script to uniformly train

each model. These trained models were then saved as '.h5' files in the local directory, enabling

easy access for subsequent analysis and comparisons. The function responsible for training the

models was appropriately named train_model(), as depicted in the figure below. This systematic

approach helps to streamline the training process and promote transparency in the evaluation of

the models.

The provided figure illustrates the utilization of both training and validation datasets to evaluate

accuracy throughout the training process (lines 117 to 118). To ensure that every image in the

training dataset is covered within a single epoch, the steps per epoch were defined as the total

number of samples in the training dataset divided by the batch size (line 119).

Given that multiple models were required for comparison in this training scenario, the number of

epochs was set to ten (line 120). This selection strikes a balance between training time and

achieving satisfactory model accuracy, as will be demonstrated in section 5.1. Once the model

training is complete, it is saved to the disk (line 121).

Figure 16 - train_model() Function

43

To facilitate the compilation of models, a builder function was implemented (build_model() – as

seen in the figure below), designed to accommodate two parameters: the name of the model and

the desired shape of the transformed images. This builder function allows for flexible

customization by enabling the specification of the model's name and the desired shape of the

input images. By encapsulating these parameters within the builder function, the process of

constructing models becomes more streamlined and adaptable to different requirements.

To harness the benefits of transfer learning, the design employed a strategy of freezing all layers

except the last five in the base model (lines 101 to 102) and adding an additional pooling layer

and a dense layer. This approach allows the pre-trained weights and feature extraction

Figure 17 - build_model() Function

44

capabilities of the base model to be leveraged while adapting it for binary classification. The

added layers also enhance the model's ability to learn and generalize from the data.

The final model design, before hyperparameter tuning, was established and built for training

purposes using the build_custom_model() function in the figure below. Note that the

hyperparameters for this model are the same as with the build_model() function.

After training the models, they were loaded and then evaluated through the invocation of the

following methods – load_trained_models() and evaluate_models(), respectively.

Figure 18 - build_custom_model() Function

Figure 19 - Model Evaluation Call

45

The evaluation process relied on the utilization of the evaluate_model() function, depicted in the

figure above. It should be noted that the array of true image labels, denoted as y_true, and the

array of model predictions, denoted as y_pred, served as the key inputs for this function.

Following the prediction (line 170), ‘argmax()’ is called to one-hot encode the class labels (line

171). The calculate_metrics() function was subsequently invoked (line 172), with the

aforementioned arrays being passed as arguments. The calculate_metrics() function then

calculates the accuracy, precision, recall, and f1-score using the TP, TN, FP, and FN rates derived

using the function in the figure below. It then prints these performance metrics, along with the

confusion matrix.

Figure 20 - evaluate_model() Function

Figure 21 - calculate_rates() Function

46

4.5 Hyperparameter Tuning

In the context of machine learning models, internal parameters refer to the weightings of the

neurons determined by training a neural network; hyperparameters, on the other hand, refer to

the parameters which are pre-configured before the training process [58]. The selection and

configuration of an ML model's hyperparameters have a significant impact on how well it

performs, as they establish the model’s organisational structure [59]. Some common

hyperparameters are [60]:

• The number of layers in the model

• The number of neurons in each layer

• The activation function used in each layer

• The optimizer used to minimize the loss function

• The learning rate of the optimizer

• The batch size used during training

• The number of epochs used during training

There are two main categories of approaches for hyperparameter tuning: manual search, which

includes a person changing certain hyperparameters by hand; and automatic search, which uses

functions to iteratively improve without the requirement for user input past setting the bounds.

4.5.1 Manual Search

The success of this method of tuning is highly reliant on the professional expertise of the user. It

becomes easy for a person to misread trends and relationships due to high dimensionality.

Additionally, the results of a manual tuning process may not be reproducible [61].

47

4.5.2 Automatic Search

Automatic search algorithms, such as grid search, random search, and Bayesian optimization are

solutions to this problem. They reduce the need for in-depth knowledge of the process and

instead implement an iterative method [61]. Each algorithm has its advantages and

disadvantages, which are discussed below.

Grid Search

Grid search is the simplest automatic hyperparameter tuning method, which utilizes an

exhaustive evaluation approach; therefore, all combinations will be compared, and the best

performing will be identified. However, this comes at the cost of efficiency; this method is limited

due to its computational expense, and the ‘curse’ of dimensionality [61]. As a result of its

inefficiency, it is primarily useful when dealing with a small hyperparameter space.

Random Search

The random search algorithm improves upon grid search by instead running iterations with

random values within the defined range, which saves on computation. Aside from its efficiency,

this strategy can be especially effective when the hyperparameter space is large or there is little

prior knowledge about the ideal hyperparameter values [62]. Although this technique may find

the optimal hyperparameters faster than grid search, it may also be used exhaustively.

48

Bayesian Optimization

In contrast, Bayesian optimization is a sequential model-based optimization technique that works

by obtaining posterior information of function distribution using the Bayesian formula [63]. This

information allows the algorithm to make informed decisions about the next hyperparameter

distribution [63]. It is especially helpful when evaluating the objective function requires a lot of

time or resources [64].

Evaluation of Techniques

In summary, grid search is straightforward but computationally expensive, random search offers

efficiency and is suitable for large hyperparameter spaces, while Bayesian optimization combines

a probabilistic model with intelligent search decisions, making it particularly useful when the

evaluation of the objective function is resource-intensive or time-consuming. The choice of

method depends on the characteristics of the hyperparameter space and the available

computational resources.

Based on these factors, the selected hyperparameter tuning technique was Bayesian

optimization, as it provides an efficient and effective manner of handling a large hyperparameter

space. This is ideal because the optimal values are uncertain and require exploration.

49

4.5.3 Implementation

Hyperparameter tuning was implemented similarly to performance metric evaluation and was

cast into ‘hyperparameters.py’. Firstly, the dataset split was the same with 80% training and 20%

validation. Secondly, it utilized a different model building function, also named build_model(),

which can be viewed below.

Line 34 shows the parameters for the function as the learning rate and dropout rate, allowing for

simple modification of the hyperparameters. In addition to what was in the

build_custom_model() function, there is also dropout which is implemented on lines 58 to 61.

Figure 22 - hyperparameters.py build_model() Function

50

Next is the optimize_model() function which was responsible for returning the best validation

accuracy for a full training cycle, as in the figure below. It builds the model (line 68), trains it and

assigns its history to a variable (line 71) and finds and returns the ‘max’ validation accuracy from

the history (lines 74 and 76).

Finally, the hyperparameter space is defined in lines 81-84, specifying the bounds for each

hyperparameter. These bounds are then passed to the Bayesian optimization object while

defining the optimize_model() function in line 87. Additionally, the number of initial points and

iterations for the optimization process is determined, and the optimizer is executed in line 88.

Once the optimization is complete, the best-found parameters are stored and printed to the

console in lines 90-97. This process can be observed in the subsequent figure.

Figure 23 - hyperparameters.py optimize_model() Function

51

Figure 24 - hyperparameters.py Invokation

52

4.6 Sensitivity Analysis

Sensitivity analysis is a method where the model input is altered in a controlled manner and the

consequences of the changes are assessed. According to Salciccioli, et al. (2016), its purpose is

to quantify how the uncertainty of model input is related to the uncertainty of outputs. Through

uncertainty quantification, it enables researchers to evaluate how various input uncertainties

propagate to the output uncertainty to determine the model's robustness and dependability [65].

The procedure is crucial because it may aid in error detection, model parameter calibration, and

a deeper comprehension of the connection between the model's inputs and outputs [66].

4.6.1 Error Detection and Model Calibration

Sensitivity analysis for error detection and model calibration works by identifying the parameters

that are most susceptible to changes in input data and calculating the effect of these changes on

the model's output [66]. By systematically varying the values of specific parameters or inputs,

sensitivity analysis provides insights into the relationship between these inputs and the

corresponding outputs. This helps in understanding the model's behaviour and identifying

potential discrepancies or errors [67]. The parameters that have the most effects on the model's

output are highlighted via sensitivity analysis, which also helps with model calibration.

Researchers can prioritise their efforts in fine-tuning and calibrating these important parameters

to enhance the performance of the model by focusing on them. The sensitivity analysis results

are used to iteratively alter the parameter values, improving the accuracy and dependability of

the model by ensuring that predictions match observed data [68].

53

4.7 Activation Map

In image localization, the goal is to identify and localize specific objects or regions of interest

within an image. CNNs are powerful models that excel at capturing hierarchical representations

of visual data. Activation maps play a crucial role in this process by highlighting the areas of the

image that contribute most to the network's decision-making. According to Wharton, et al.

(2021), this is primarily because CNNs can dissect a picture into smaller parts, extract multi-scale

localised features, and then combine them to create extremely comprehensible representations

for decision-making. An example of an activation map can be seen in the figure below.

As can be observed, the activation map provides an expressive output of the model’s internal

representations and highlights the most decisive sections of the image for class determination.

An activation map has many purposes, such as providing interpretability and transparency for a

model, visualization of its localization capabilities, comparison to other models, and exposure of

errors for analysis, which provides the basis for more informed decisions in fine-tuning and

refinement. This provides some remediation for a model’s black-box nature [69].

Figure 25 - Shoe Activation Map [101]

54

The activation map is generated by applying a technique such as Grad-CAM (Gradient-weighted

Class Activation Mapping) or CAM (Class Activation Mapping), which allows for visualizing the

areas of the image that are most relevant to the model's decision-making process.

4.7.1 CAM

CAM is an approach for producing feature maps from a DNN that is simple yet effective. It

achieves this by extracting the weightings from the final convolutional layer of the model and

performing a dot product between the reshaped activation maps and class weights [70].

4.7.2 Grad-CAM

On the other hand, Grad-CAM considers gradients from throughout the network, providing more

class discrimination and more fine-grained visual explanations [71]. However, due to the gradient-

averaging step, Grad-CAM may not always be reliable in that it can sometimes highlight sections

that were not used [72].

Considering its simplicity of implementation and effectiveness, the decision was made to employ

CAM as the preferred method for visualizing the activation map. Grad-CAM was not chosen

because its gradient averaging tends to highlight unused sections of the image, reducing

localization reliability.

55

4.8 Front-end Design

In a production environment, such as an engineering facility, the web-based GUI would allow

workers the ability to seamlessly monitor a live feed and swiftly scan components using a

connected camera when the user presses a submit button. The system would then promptly

generate a processed image of the component, which would display information such as its defect

status, alongside localization and classification of defects. However, since physical access to SPIs

was not available, and annotation of a sufficiently sized subset of the dataset was infeasible,

certain design adjustments were made in the front-end. An overview of the proposed process can

be ascertained from the figure below.

Instead of relying on a live camera feed, the GUI was tailored to utilize a file selection button,

granting users the ability to upload pre-existing images composed of the front surface of SPIs.

Due to the lack of dataset annotation, classification of distinct types of defects (M-FR2) was

Figure 26 - Frontend Application Flowchart

56

impossible, therefore the returned processed image would consist of a heatmap localization

instead. Considering the proof-of-concept purpose of the system, it was determined that this

approach would suffice. By opting for the file upload functionality, only minimal adjustments to

the existing code would be necessary to transition to a solution aligned with the production

design.

For minimalism and functionality, a card design has been utilized for the GUI. As in the figure

below, the contents of the card consist of an initial ‘upload image’ button. Depending on the

inference of the model, after processing the card will display either 'Defective' or 'Not Defective'

as the result, along with the model’s confidence in the prediction and a displayed image that can

be either processed or unprocessed.

Figure 27 - GUI Wireframe

57

4.8.1 Implementation

The application is initialised using the app.run() function, as with any other Flask application. The

user can then access the default endpoint (‘/’) which is defined in the figure below.

This endpoint returns a ‘render template’ which can utilize Jinja templating to change the user’s

view based on backend logic; however, this was not necessary since JQuery provides a more

seamless experience.

For styling, Bootstrap along with some custom CSS was utilized, and their inclusion in the render

template (index.html) can be observed in the subsequent figure.

The template’s body structure used the Bootstrap grid layout along with a custom ‘flexbox’ class

(see figure below) to simplify the process of positioning and responsive resizing.

Figure 29 - Bootstrap and Custom CSS Link Tags

Figure 30 - Custom CSS Class

Figure 28 - Implementation Default Endpoint

58

The grid layout can be observed in the usage of rows and columns (e.g., line 15 and 16).

Additionally, components such as the image container div (line 17), the loading GIF (line 25), and

h2 and h5 tags for the defective status and confidence, respectively (lines 31 to 32). It should also

be noted that both png and jpeg images are permitted for uploading, as seen in the file select tag

(line 35).

JQuery was responsible for dynamically modifying the page and is triggered when the file in the

file select tag changes. This can be observed in the figure below.

Figure 31 - Implementation Template Body

Figure 32 - JQuery 'on file change' Logic

59

There is then a check to ensure a file was successfully added to the script (line 51). If successful,

an AJAX POST request (line 55) is sent to the ‘/process-image’ endpoint, which sends the raw

image data after dynamically modifying the styling of the front-end (lines 61-66). On successful

processing, the response is sanity-checked, and its data is used to update the HTML (line 67-82).

If the backend encounters an error or there is a timeout, the site will display an error message

(lines 84 to 87).

Figure 33 - Implementation Template JQuery

60

The ‘/process-image’ endpoint begins with a check to verify a file has been uploaded, as in the

figure below.

Next, the file is saved to the ‘tmp’ folder (lines 37-39) with a UUID file name (line 36) to avoid

collisions as in the figure below.

After saving, a new thread is created (line 42) to run the ‘garbage_collection()’ function on the

file to delete it after 15 seconds, preventing a build-up of images (see figure below). The

‘is_defective()’ function is then called (line 44), which runs model inference on the input image

and returns a boolean and the confidence values, as in the subsequent figure.

Figure 34 - Implementation '/process-image' Check

Figure 35 - Implementation '/process-image' File Saving and Processing

Figure 36 - Implementation '/process-image' garbage_collection() Function

61

The ‘is_defective()’ function first loads the image using the path passed to it (from the ‘tmp’

folder), seen on line 23. Next, it resizes the image (line 24) to allow the uploading of different

image sizes, converts it to an array using numpy (line 25), and normalizes the image (line 28).

After that, the prediction is made on the image array (line 31), and the confidence is calculated

(line 32). Finally, the prediction class is validated (line 35). If it is predicted as defective, the

function returns True, along with the confidence value (line 36). Otherwise, it returns False, also

accompanied by the confidence value (line 38).

Figure 37 - localization.py 'is_defective()' Function

62

Going back to ‘/process-image’ in the figure below, the function then checks the result of the

prediction (line 46). If defective, the activation map is created and saved to the ‘tmp’ folder using

a modified version of the original image’s filename (line 47). Then, a garbage thread is created for

that file (line 49), it is saved (line 53) and encoded for transfer (line 57), added to a new response

along with the status and confidence, and sent (lines 59-63). If not defective, the image does not

get processed further than the initial prediction, so the response consists of the status and

confidence.

Figure 38 - Implementation '/process-image' Response

63

Finally, as seen in the previous figure, the ‘save_activation_map()’ function is the implementation

of class activation mapping (CAM) and can be seen in the subsequent figure. As with

‘is_defective()’, the image is loaded, resized, and converted to an array (lines 47 to 49). A

prediction is then performed using the intermediate layer – the final convolutional layer (line 51),

the output is processed, and the activation map is resized to overlay the image (lines 52 to 59). A

plot is then created using matplotlib (lines 61), the activation map is overlayed over the image

(lines 62 to 63), and the file is saved to be sent in the response (line 69).

The full code used in the implementation along with a screenshot of the project directory structure

can be found in the Appendix.

Figure 39 - localization.py 'save_activation_map()' Function

64

5. Results and Discussion
5.1 Performance Analysis of ML Models

This section provides a comprehensive experimental evaluation and comparison utilising relevant

performance metrics.

5.1.1 Experimental Comparison

To ensure fair comparisons between models, the chosen approach for implementation involved

utilizing transfer learning with the three architectures: VGG16, InceptionV3, and ResNet50. This

approach entailed utilizing the pre-trained models with weights from the ImageNet dataset. To

achieve this, the top classification layer was removed, and the weights of the base model were

frozen, excluding the last five layers. Additionally, to define the outputs for binary classification,

an extra pooling layer and a dense layer were added. By adopting this methodology, a consistent

and standardized framework was established for evaluating the performance of the models, as

discussed previously.

Dataset Split

As mentioned earlier, the dataset consists of 1300 images of SPIs. The training-validation split for

each task was set at 80% and 20% respectively. This allocation was chosen because it strikes a

balance between providing an ample amount of data for training and reserving a sufficient

portion for validation. By allocating 80% of the dataset for training, the model can learn from a

diverse range of examples, enabling it to capture the underlying patterns and intricacies of the

65

SPIs. The remaining 20% set aside for validation ensures that the model's performance can be

assessed on unseen data, allowing for a reliable evaluation of its generalization capabilities. This

split aims to prevent overfitting, where the model memorizes the training data without truly

understanding the underlying concepts, and instead promotes the development of a robust and

effective model that can effectively generalize to new SPIs.

Input Image Dimensions

It was initially attempted to use the original 512x512 images for training; however, the GPU used

lacked sufficient memory to handle the training of the proposed model. Consequently, a decision

was made to downscale the images to 224x224. This resizing was deemed necessary because it

allowed the GPU to accommodate the training process of the proposed model within its memory

limitations.

By reducing the image dimensions from 512x512 to 224x224, the computational requirements

were significantly reduced, enabling efficient training without compromising the overall quality

of the dataset. This resolution is a commonly used standard in many computer vision tasks and

has been shown to yield satisfactory results in various deep learning models [73]. Additionally, it

aligns with the input size expectations of pre-trained models such as VGG [74], facilitating the

utilization of pre-trained weights and transfer learning, which can greatly benefit the training

process. The smaller image size not only allowed for successful model training but also

contributed to faster computation during both the training and inference stages.

66

Results (224x224 Images)

The results obtained for the 224x224 images are presented in the following figures, which will be

subsequently compiled into a table and discussed.

Figure 40 - Comparison Results Custom Model (224x224)

Figure 41 - Comparison Results VGG16 (224x224)

Figure 42 - Comparison Results InceptionV3 (224x224)

67

Table 5 - Comparison Results Table (224x224)

Model Training
Accuracy

(3sf)

Validation
Accuracy

(3sf)

Precision Recall F1-Score TP TN FP FN

Proposed
Model

99.5% 95.0% 0.888 1.000 0.941 103 143 13 0

VGG16 99.9% 97.7% 0.945 1.000 0.972 103 150 6 0

InceptionV3 93.3% 91.5% 0.879 0.913 0.895 94 143 13 9

ResNet50 83.1% 82.6% 0.903 0.631 0.743 65 149 7 38

Discussion

According to the performance measures, VGG16 was the best-performing model, predicting non-

defective cases with exceptional accuracy. It had the highest validation accuracy (97.7%),

precision (0.945), recall (1), and F1-Score (0.972). These data indicate its outstanding overall

performance in correctly categorising non-defective samples. The Custom Model likewise

performed well, with a high accuracy of 95% and faultless recall. With a validation accuracy of

91.5%, precision of 0.879, recall of 0.913, and F1-Score of 0.895, InceptionV3 performed well.

ResNet50, on the other hand, displayed lower accuracy and recall, with a validation accuracy of

Figure 43 - Comparison Results ResNet50 (224x224)

68

82.6%, precision of 0.903, recall of 0.631, and F1-Score of 0.743. These measurements suggest

that ResNet50 may have issues in recognising non-defective instances, perhaps leading to false

positives.

Results (128x128 Images)

The results obtained for the 128x128 images are presented in the following figures, which will be

subsequently compiled into a table and discussed.

Figure 44 - Comparison Results Custom Model (128x128)

Figure 45 - Comparison Results VGG16 (128x128)

69

Table 6 - Comparison Results Table (128x128)

Model Training
Accuracy

(3sf)

Validation
Accuracy

(3sf)

Precision Recall F1-Score TP TN FP FN

Proposed
Model

98.2% 97.7% 0.945 1 0.972 103 150 6 0

VGG16 99.1% 98.5% 0.981 0.981 0.981 101 154 2 2

InceptionV3 93.0% 93.1% 0.890 0.942 0.915 97 144 12 6

ResNet50 89.9% 89.2% 0.826 0.922 0.872 95 136 20 8

Figure 46 - Comparison Results InceptionV3 (128x128)

Figure 47 - Comparison Results ResNet50 (128x128)

70

Discussion

When the models were compared, VGG16 had the highest validation accuracy, suggesting greater

overall performance. It also had the best precision and F1-score, signifying that it struck a fair

balance between properly detecting positive samples and minimising false positives and false

negatives. The custom model, on the other hand, had a somewhat greater recall, which means it

accurately recognised all positive samples. InceptionV3 and ResNet50 demonstrated inferior

validation accuracies, precision, recall, and F1-scores than VGG16 and the Custom Model. Based

on these findings, VGG16 performed the best of the models, followed closely by the custom

model.

The overall validation accuracies increased when using 128x128 images, therefore these image

dimensions were used for any further tasks. Also, because of its superior performance and ability

to be trained on 512x512 images, a transfer-learning trained VGG16 model was used for back-

end processing in the web application.

71

Model File Sizes

It should be noted that the custom model was considerably larger in file size than the other

trained models, sitting at 408MB with 128x128 images compared to 86MB, 119MB, and 158MB

for InceptionV3, ResNet50, and VGG16 respectively, as seen in the figure below.

Additionally, only the file size of the proposed model notably increased, reaching 1.22GB, while

the other models remained mostly unchanged. This can be attributed to most of their layers being

frozen during transfer learning.

Figure 49 - Model File Sizes with 224x224 Input

Figure 48 - Model File Sizes with 128x128 Input

72

5.2 Hyperparameter Tuning Results

Hyperparameter tuning was carried out using Bayesian optimization. The model was trained for

50 epochs for each hyperparameter combination. In total, there were 13 cycles of optimization,

with the first three finding the best initial point using random search, and the remainder relying

upon Bayesian optimization.

5.2.1 Selected Hyperparameters

The hyperparameters used for tuning were the learning rate and dropout rate. Although various

hyperparameters could have been additionally utilized, it was decided to focus on the most crucial

for training [75] [76]. Consequently, the Adam optimizer was selected as the optimization

method.

Learning Rate

The learning rate is responsible for determining the step size during optimization; a rate that is

too low would result in a search that takes a long time and can get stuck, whereas a rate that is

too high is prone to overshooting the minimum [77].

Dropout Rate

Whilst the dropout rate controls what proportion of the data is randomly ‘dropped out’; this has

the benefit of helping to improve the model’s overall generalization ability and prevent overfitting

[78].

73

Adam Optimizer

Empirical findings show that Adam performs better in practice and performs favourably when

compared to other stochastic optimisation techniques such as SGD, Adagrad, and Adadelta [79].

Due to its adaptive learning rates and moment estimates, it frequently converges more quickly

than other optimizers, allowing it to move quickly toward the minimum for faster training [80].

Justification for Selected Hyperparameters

It provided for an efficient and effective approach to enhancing model performance by focusing

on the two hyperparameters that have the most influence on overall performance and

generalisation ability. Because the dataset is well-balanced, it was suitable to rely on validation

accuracy to provide an overview of performance in hyperparameter tuning. Taking this into

consideration, the model’s performance is discussed using the performance metrics used in the

prior section.

5.2.2 Tuning Attempt 1

The default learning rate for the Adam optimizer in Keras is 0.001, which serves as a benchmark

for establishing an appropriate range. Thus, for the initial tuning attempt, a range of 0.001 to 0.01

was selected. Similarly, as dropout with a rate of 50% (0.5) is often used as a starting point [81],

the initial range for dropout was chosen as 0% to 50%. This broader range facilitates more

effective operation of Bayesian optimization, as restricting the range might necessitate additional

tuning to uncover optimal values. The table and figure below provide a visual representation of

these chosen ranges for learning rate and dropout values.

74

Table 7 - Initial Hyperparameters

Parameter Lower Bound Upper Bound

Learning Rate 0.001 0.01

Dropout Rate 0 0.5

The tuning output is summarized in the subsequent figure, showcasing the best validation

accuracy achieved. The highest validation accuracy recorded was an impressive 98.85%. This

notable accuracy was attained with a dropout rate of approximately 36% and a learning rate of

around 0.0011. The obtained validation accuracy is indeed promising, and the chosen dropout

rate falls within the acceptable range for regularization purposes. However, it is worth noting that

the learning rate is positioned quite close to the lower bound, indicating the potential for further

improvement by exploring a lower minimum bound for the learning rate.

Figure 50 - Hyperparameter Tuning Ranges (Attempt 1)

Figure 51 - Hyperparameter Tuning Output (Attempt 1)

75

5.2.3 Tuning Attempt 2

Based on the findings of the previous tuning attempt, it became apparent that lowering the

learning rate could potentially lead to improvements. Therefore, for this subsequent attempt, the

range for the learning rate was narrowed down to 0.0001 to 0.001. This revised range offers

enough flexibility to explore different values while avoiding excessive breadth that could hinder

the search for the optimal learning rate.

On the other hand, the range for dropout was maintained the same as in the previous attempt (0

to 0.5). This decision was based on the observation that the previous range did not appear to

restrict improvements. By keeping the range unchanged, we allow for continued exploration of

dropout values without imposing unnecessary constraints. A visual representation of these

ranges for the learning rate and dropout values can be found in the previous figure.

The result for this attempt yielded a higher validation accuracy of 99.23% at a dropout rate of

36.8% and a learning rate of 0.0008575, as can be ascertained from the output in the figure and

table below. The table compares the values between attempts.

Figure 52 - Hyperparameter Tuning Ranges (Attempt 2)

76

Table 8 - Comparison between Tuning Attempts 1 and 2

Attempt

Best

Validation

Accuracy

(2dp)

Best Learning

Rate (3sf)

Best Dropout

Rate (3sf)

Learning Rate

Change Since

Previous

Attempt

Dropout Rate

Change Since

Previous

Attempt

1 98.84% 0.001070 0.363 N/A N/A

2 99.23% 0.000858 0.369 -0.000212 +0.006

This table shows a lower learning rate and a higher dropout rate have a positive impact on

accuracy.

Figure 53 - Hyperparameter Tuning Output (Attempt 2)

77

5.2.4 Tuning Attempt 3 (Final)

Building upon the notable improvement achieved in the previous attempt, it became evident that

further gains in validation accuracy could be obtained through additional tuning. To focus the

search and explore more promising regions of the hyperparameter space, the range for the

learning rate was narrowed down to 0.0005 to 0.001, as can be seen in the figure above.

Additionally, the range for dropout was adjusted to span from 20% to 50%. By restricting the

range within this narrower interval, the tuning process can concentrate on dropout values that

have shown potential for enhanced generalized performance. This constrained range enables a

more focused exploration, aiming to uncover the most effective dropout rate for improving

validation accuracy.

In the latest tuning attempt, a higher validation accuracy of 100% was achieved. This accuracy

was obtained with a dropout rate of 46.39% and a learning rate of approximately 0.0006245. The

corresponding output can be observed in the figure below, confirming these optimal values. This

is again accompanied by a table comparing the results between tuning attempts.

Figure 54 - Hyperparameter Tuning Ranges (Attempt 3)

78

Table 9 - Comparison between Tuning Attempts 1, 2, and 3

Attempt

Best

Validation

Accuracy

(2dp)

Best Learning

Rate (3sf)

Best Dropout

Rate (3sf)

Learning Rate

Change Since

Previous

Attempt

Dropout Rate

Change Since

Previous

Attempt

1 98.84% 0.001070 0.363 N/A N/A

2 99.23% 0.000858 0.369 -0.000212 +0.006

3 100.00% 0.000643 0.464 -0.000215 +0.095

As with the previous comparison, this table shows that a lower learning rate and higher dropout

rate benefitted the model’s classification ability.

Figure 55 - Hyperparameter Tuning Output (Attempt 3)

79

Result Verification

The model was retrained using these parameters for verification, and the retraining process

yielded a validation accuracy of 98.85%. It is worth noting that previous epochs achieved even

higher accuracies, reaching 99.23%, as shown in the figure below.

The training metrics, which consist of training and validation accuracy, as well as training and

validation loss, were visualized using the 'pyplot' module from the matplotlib library. Two graphs

were generated to represent these metrics. Please refer to the figures on the following pages to

view the graphs. The analysis of the results depicted in the graphs will be discussed subsequently.

Figure 56 - Final Training Output

80

Figure 57 - Training and Validation Accuracy Plot

81

Figure 58 - Training and Validation Loss Plot

82

Graph Results Discussion

The model demonstrated a promising initial accuracy of 60%, which experienced a rapid increase

within the first 10 epochs, surpassing the 90% threshold. However, the subsequent improvement

rate gradually slowed down. Compared to the models examined in the earlier comparison, it

became apparent that the model in this study required a relatively larger number of epochs to

achieve its optimal accuracy. Specifically, it took approximately 40 to 50 epochs for the model to

reach its peak performance.

The accuracy and loss graphs exhibit an inverse relationship, indicating that higher accuracy

corresponds to lower loss. Although minor discrepancies exist, the overall trend suggests that as

the model improves its performance, the loss decreases, resulting in higher accuracy. During the

training process, there were two noticeable periods, epochs 10 to 20 and 30 to 50, where slight

overfitting may have occurred.

To address these observations, future improvements could focus on mitigating the observed

overfitting during specific epochs. Implementing additional regularization techniques, such as

weight decay, or adjusting the model architecture may help enhance the model's generalization

capabilities [82]. Furthermore, exploring alternative optimization algorithms or refining

hyperparameter tuning strategies could potentially optimize the model's performance and

reduce the number of epochs required to achieve peak accuracy.

83

5.3 GUI and User Experience

The frontend, as discussed earlier, is a proof-of-concept to demonstrate the technology’s

applicability. As previously mentioned, the GUI used a card structure, as will be shown in the

following figures.

Figure 59 - Implementation Landing Page

Figure 60 - Implementation GUI Loading GIF

84

The first figure above illustrates the landing page, featuring a card that includes a file selection

button; this design allows users to upload files easily.

The second figure showcases the page after an image has been uploaded, depicting a waiting

state as the server processes the request. This is indicated by an animated loading icon, providing

visual feedback to the user.

In the event of a back-end error or request timeout, an error message is displayed, as shown in

the figure below. This prompt alerts the user to the issue encountered during the processing of

their request.

Figure 61 - Implementation GUI Error Message

85

The figure below presents the output obtained when an image of a non-defective casting is

uploaded. The confidence percentage accompanying the classification indicates the level of

certainty expressed by the model in its classification decision. Given the high accuracy of the

model utilized for this application – specifically, a transfer learning trained VGG16 model – the

predictions are often made with 100% confidence. This indicates the model's strong level of

certainty in its classifications.

Figure 62 - Implementation GUI Result (Not Defective)

86

The activation map in the figure above highlights how techniques such as CAM can be used to

localize defects and provide insights into model decision-making. It also illustrates the ability of

activation maps to provide error-finding capabilities. In the figure, a minor inconsistency in the

background towards the top right portion resulted in some erroneous weighting being assigned.

This observation emphasizes the significance of incorporating variations and diverse samples

within the dataset and its implications on the network’s decision-making.

Figure 63 - Implementation GUI Result (Defective)

87

5.4 Discussion

This discussion centres around the fulfilment of both functional and non-functional requirements

that were successfully met (identifiable by the requirement ID in italics). Discussion regarding the

unmet requirements can be found in Section 6.2, which specifically addresses the limitations

encountered during the project.

The application and model’s speed can be evaluated by measuring the time required for model

inference. In the figure below, the first log line depicts a 20-millisecond interval, where the

endpoint initiates a thread to make a prediction using the entire model, followed by a POST

response. The subsequent three lines demonstrate inference times of 22 milliseconds, 18

milliseconds, and another POST response. This demonstration confirms the fulfilment of

requirements M-NFR1, M-NFR3, and F-NFR2; as fast model inference (M-NFR1) leads to batch

processing capability (M-NFR3), resulting in a smooth and responsive user experience (F-NFR2).

The initial POST involved analysing a non-defective image, requiring only one inference. In

contrast, the subsequent POST involved a defective image that necessitated additional

processing. The second image required two inferences to be made. Firstly, the application

checked if the image was defective and received a positive result. Secondly, the activation

Figure 64 - Implementation Performance Logs

88

mapping function extracted weightings from the final convolutional layer of the model, leading

to a separate prediction.

While the prediction performance of this model is indeed dependent on the server's graphics

processing power, being a web application with server-side processing means that the client can

seamlessly use a low-powered device without experiencing any significant decrease in speed,

increasing its interoperability. Additionally, the application's modern frameworks ensure

compatibility with a wide range of browsers (F-NFR3). The user interface, designed with cards, is

intuitive and straightforward (F-NFR1) and it is responsive to different screen sizes (F-NFR4).

After uploading an image through the file upload button (F-FR1), the system generates an output

image that includes an activation map overlay (F-FR4) and displays the classification results (F-

FR2). This image can be downloaded by the user for further analysis (F-FR5).

The proposed model can classify surface defects (M-FR1) to an accuracy of 99.23% (M-FR4),

accepting any RGB image as input (M-FR3), and could provide insights into decision-making

through feature activation map extraction (M-NFR4).

In conclusion, all requirements were met other than M-FR2, M-NFR2, and F-FR3, which are

discussed in Limitations (section 6.2).

89

6. Conclusion and Future Work
6.1 Verification of the Study

The study followed established best practices and guidelines in the field of deep learning and

model evaluation. A sufficiently sized, high-quality, and balanced dataset was selected for training

and validation. This dataset selection process aimed to provide representative samples and

mitigate biases that could impact the model's performance.

During the training process, the Adam optimizer, a widely recognized industry standard [82], was

employed to optimize the model's parameters. The Adam optimizer is known for its effectiveness

in yielding successful and reliable results [83]. Furthermore, the implementation of the dropout

regularization technique was utilized to minimize overfitting, promoting better generalization of

the model.

To assess the models' performance, various evaluation metrics, including accuracy, precision,

recall, and F-1 score, were employed. These metrics are widely adopted in machine learning tasks

due to their ability to provide a comprehensive assessment of the model's classification ability

[84]. Accuracy measures the overall correctness of predictions, while precision and recall focus

on the model's ability to minimize false positives and false negatives, respectively. The F-1 score

combines both precision and recall, offering a balanced evaluation of the model's performance.

In conclusion, the experimental setup, along with evaluation metrics, statistical analyses, and

comparative assessments with existing architectures contribute to the credibility and reliability

of the study's findings, allowing for meaningful conclusions to be drawn and providing insights

into the performance of the CNN architecture in comparison to other established models.

90

6.2 Limitations

Throughout the project, a few limitations have been identified that warrant discussion. These

limitations can be categorized into two groups: unmet requirements and additional limitations

beyond the specified project requirements.

6.2.1 Unmet Requirements

Table 10 - Unmet Requirements

Requirement

ID

Description Justification/Explanation

M-FR2 The system shall support multiple

classes of surface defects.

Annotating the images accurately

proved to be highly challenging due to

the wide range of distinct casting defects

and the lack of domain knowledge. The

complexity and diversity of the defects

made it impractical to annotate the

images accurately.

M-NFR2 The model shall be able to handle

variations in lighting conditions and

camera angles.

The dataset consisted of photos taken

from the same general angle in mostly

uniform lighting conditions. There were

no other similar datasets, therefore the

model could not be trained as such.

F-FR3 The frontend shall support real-

time streaming of images from a

connected camera.

As the frontend is a proof-of-concept

system, it instead used manual file

upload functionality. Switching to a

camera would be relatively simple in

implementation, however, the author

did not have access to the SPIs.

91

6.2.2 Additional Limitations

The main limitation encountered other than those already listed was limited GPU memory, which

prevented training using higher dimension images such as 512x512. This was the initial reasoning

for downscaling the images to lower dimensions for model comparison, however, it turned out

that classification performance consequently marginally improved. Additionally, as 512x512

training was not possible using the proposed model, it was decided to use a fine-tuned VGG16

model instead for the frontend, to retain image quality for demonstration purposes.

6.3 Future Work

Although the project achieved overall success, there are still areas that warrant improvement and

further development. Firstly, annotating the dataset to provide labelled bounding boxes and the

ability to distinguish between different types of defects (M-FR2) would greatly enhance the

system's effectiveness. By incorporating this additional information into the training process, the

model can be trained to accurately identify and classify various defect categories, resulting in

more comprehensive defect detection and data aggregation.

Secondly, further efforts should be dedicated to redesigning and developing the model with the

goal of achieving a smaller size and higher memory efficiency. This optimization would not only

contribute to faster inference times and reduced computational requirements but also make the

system more scalable and accessible for real-world deployment. By optimizing the model's

efficiency, the system would be able to handle larger datasets and be deployed on resource-

constrained devices more effectively.

92

In addition to model improvements, the integration of live camera functionality into the front-

end application (F-FR3) would greatly enhance the system's usability and practicality. This feature

would allow users to capture real-time images or videos for defect detection, providing

immediate feedback and facilitating prompt decision-making through more seamless

interactivity.

Addressing these aspects would result in a more accurate, efficient, and user-friendly system,

elevating its overall performance and impact.

6.4 Conclusion

The primary finding of this research underscores the effectiveness of a novel deep neural network

in surface defect classification tasks. However, it also highlights that employing transfer learning

techniques can yield equal or potentially superior results in terms of effectiveness and efficiency.

This discovery emphasizes the significance of leveraging pre-trained models and existing

knowledge in the field of deep learning to enhance the performance and productivity of defect

classification systems. By leveraging transfer learning, researchers and practitioners can achieve

robust and accurate defect detection while optimizing computational resources and reducing

training time. This insight contributes to the broader understanding of the practical

implementation and optimization of DNN models for surface defect classification, paving the way

for more efficient and effective applications in industrial and quality control domains.

93

7. References

[1] Carrier Vibrating, “Reducing The Rate Of Casting Defects In the Foundry Line,” 1 June

2018. [Online]. Available:

https://www.carriervibrating.com/resources/blog/reducing-rate-of-casting-defects-

foundry-line/. [Accessed 5 November 2022].

[2] F. Kreier, “Metal-lifespan analysis shows scale of waste,” 2022. [Online]. Available:

https://www.nature.com/articles/d41586-022-01467-8. [Accessed 6 November 2022].

[3] X. Tao, D. Zhang, W. Ma, X. Liu and D. Xu, “Automatic Metallic Surface Defect

Detection and Recognition with Convolutional Neural Networks,” Special Issue

Advanced Intelligent Imaging Technology, vol. 8, no. 9, pp. 1575-1600, 2018.

[4] Editorial, “Deep Learning Vs. Traditional Image Processing – A Comparison,” 2021.

[Online]. Available: https://roboticsbiz.com/deep-learning-vs-traditional-image-

processing-a-comparison/. [Accessed 12 November 2022].

[5] J. Howarth, “57+ Amazing Artificial Intelligence Statistics (2022),” 2022. [Online].

Available: https://explodingtopics.com/blog/ai-statistics. [Accessed 6 November

2022].

[6] C. M. Ryan, A. Parnell and C. Mahoney, Real-Time Anomaly Detection for Advanced

Manufacturing: Improving on Twitter's State of the Art, 1911.05376: arXiv, 2019.

[7] L. M. G. Fonesca, L. M. Namikawa and E. F. Castejon, “"Digital Image Processing in

Remote Sensing", 2009 Tutorials of the XXII Brazilian Symposium on Computer

Graphics and Image Processing,” 2009.

[8] M. Sood, “Digital Image Processing,” 2019. [Online]. Available:

https://cevgroup.org/digital-image-processing/. [Accessed 20 November 2022].

[9] M. Azimi, “Digital Image Processing Lectures 1 & 2,” [Online]. Available:

https://www.engr.colostate.edu/ECE513/SP09/lectures/lectures1_2.pdf. [Accessed

20 November 2022].

[10] R. Kundu, “Image Processing: Techniques, Types, & Applications [2022],” 2022.

[Online]. Available: https://www.v7labs.com/blog/image-processing-guide. [Accessed

24 November 2022].

[11] Y. Shin, M. Kim, K.-W. Pak and D. Kim, “Practical Methods of Image Data

Preprocessing for Enhancing the Performance of Deep Learning Based Road Crack

Detection,” ICIC Express Letters Part B: Applications, vol. 11, no. 4, pp. 373-379, 2020.

[12] D. G. Ranganathan, “A Study to Find Facts Behind Preprocessing on,” Journal of

Innovative Image Processing (JIIP), vol. 03, no. 01, pp. 66-74, 2021.

94

[13] A. Fredrick, “Getting Started with Image Preprocessing in Python,” 2021. [Online].

Available: https://www.section.io/engineering-education/image-preprocessing-in-

python/. [Accessed 26 November 2022].

[14] G. Kumar and P. K. Bhatia, “A Detailed Review of Feature Extraction in Image

Processing Systems,” 2014.

[15] B. J. Lei, E. A. Hendriks and M. J. T. Reinders, “On Feature Extraction from Images,”

1999.

[16] A. Humeau-Heurtier, “Texture Feature Extraction Methods: A Survey,” IEEE Access,

vol. 7, pp. 8975-9000, 2019.

[17] MathWorks, “Feature extraction for machine learning and deep learning,” [Online].

Available: https://uk.mathworks.com/discovery/feature-extraction.html. [Accessed

25 November 2022].

[18] N. O'Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G. V. Hernandez, L.

Krpalkova, D. Riordan and J. Walsh, “Deep Learning vs. Traditional Computer Vision,”

[Online]. Available: https://arxiv.org/ftp/arxiv/papers/1910/1910.13796.pdf.

[Accessed 25 November 2022].

[19] N. Neogi, D. K. Mohanta and P. K. Dutta, “Review of vision-based steel surface

inspection systems,” EURASIP Journal on Image and Video Processing, no. Article

number: 50, 2014.

[20] X. Sun, J. Gu, S. Tang and J. Li, “Research Progress of Visual Inspection Technology of

Steel Products—A Review,” Applied Sciences, vol. 8, no. 11, 2018.

[21] X. Zheng, S. Zheng, Y. Kong and J. Chen, “Recent advances in surface defect inspection

of industrial products using deep learning techniques,” The International Journal of

Advanced Manufacturing Technology, vol. 113, pp. 35-58, 2021.

[22] T. Wang, “Spectral Methods and Computational Trade-offs in,” Cambridge, 2016.

[23] H. Jia, Y. Murphey, J. Shi and T.-S. Chang, “An intelligent real-time vision system for

surface defect detection,” 2004.

[24] J. Yang, S. Li, Z. Wang and G. Yang, “Real-Time Tiny Part Defect Detection System in

Manufacturing Using Deep Learning,” IEEE Access, vol. 7, pp. 89278-89291, 2019.

[25] ITiger, “understanding basic difference between a CNN and RNN,” 18 January 2018.

[Online]. Available: https://stackoverflow.com/questions/48318448/understanding-

basic-difference-between-a-cnn-and-

rnn#:~:text=So%2C%20to%20answer%20your%20question,usually%20used%20for%2

0image%20classification.. [Accessed 27 November 2022].

[26] M. K. Gurucharan, “Basic CNN Architecture: Explaining 5 Layers of Convolutional

Neural Network,” 28 July 2022. [Online]. Available:

95

https://www.upgrad.com/blog/basic-cnn-

architecture/#:~:text=other%20advanced%20tasks.-

,What%20is%20the%20architecture%20of%20CNN%3F,the%20main%20responsibility

%20for%20computation.. [Accessed 27 November 2022].

[27] Cortex Robotics, “Automated Inspection Systems vs Human Visual Inspection,”

[Online]. Available: https://cortexrobotics.my/automated-inspection-systems-vs-

human-visual-

inspection/#:~:text=Automated%20optical%20inspection%20systems%20play,proced

ures%20in%20most%20production%20cycles.. [Accessed 28 November 2022].

[28] S. Ravikumar, K. I. Ramachandran and V. Sugamaran, “Machine learning approach for

automated visual inspection of machine components,” Expert Systems with

Applications, vol. 38, no. 4, pp. 3260-3266, 2011.

[29] D. Theckedath and R. R. Sedamkar, “Detecting Affect States Using VGG16, ResNet50

and SE-ResNet50 Networks,” SN Computer Science, vol. 1, no. 2, p. 79, 2020.

[30] A. Shazia, T. Z. Xuan, J. H. Chuah, J. Usman, P. Qian and K. W. Lai, “A comparative

study of multiple neural network for detection of COVID-19 on chest X-ray,” EURASIP

Journal on Advances in Signal Processing, vol. 2021, no. 1, p. 50, 2021.

[31] R. Ren, T. Hung and K. C. Tan, “A Generic Deep-Learning-Based Approach for

Automated Surface Inspection,” IEEE Transactions on Cybernetics, vol. 48, no. 3, pp.

929-940, 2018.

[32] techopedia, “Data Acquisition,” techopedia, 9 February 2018. [Online]. Available:

https://www.techopedia.com/definition/30000/data-acquisition. [Accessed 28

November 2022].

[33] Wikipedia, “Analog-to-digital converter,” [Online]. Available:

https://en.wikipedia.org/wiki/Analog-to-digital_converter. [Accessed 26 May 2023].

[34] J. Valvano and R. Yerraballi, “Chapter 14: Analog to Digital Conversion, Data

Acquisition and Control,” [Online]. Available:

https://users.ece.utexas.edu/~valvano/Volume1/E-

Book/C14_ADCdataAcquisition.htm. [Accessed 26 May 2023].

[35] M. Javaid, A. Haleem, S. Rab, R. P. Singh and R. Suman, “Sensors for daily life: A

review,” Sensors International, vol. 2, no. 2666-3511, pp. 100-121, 2021.

[36] Britannica, “transducer,” [Online]. Available:

https://www.britannica.com/technology/transducer-electronics. [Accessed 26 May

2023].

96

[37] DATAQ Instruments, “WINDAQ Acquisition and Playback Software,” [Online].

Available: https://www.fieldworks.nl/media/files/WinDaq.pdf. [Accessed 26 May

2023].

[38] Tektronix, “Why is ActiveX? technology important to my data acquisition

applications?,” [Online]. Available: https://www.tek.com/en/support/faqs/why-

activex-technology-important-my-data-acquisition-applications. [Accessed 26 May

2023].

[39] The R Foundation, “What is R?,” [Online]. Available: https://www.r-

project.org/about.html. [Accessed 28 November 2022].

[40] V. Kumar, “Python Vs R: What’s Best for Machine Learning,” Towards Data Science, 11

September 2019. [Online]. Available: https://towardsdatascience.com/python-vs-r-

whats-best-for-machine-learning-93432084b480. [Accessed 29 November 2022].

[41] Data Flair, “Keras vs OpenCV – Differences Between OpenCv and Keras,” [Online].

Available: https://data-flair.training/blogs/keras-vs-opencv/. [Accessed 28 November

2022].

[42] K. Dubovikov, “PyTorch vs TensorFlow — spotting the difference,” Towards Data

Science, 20 June 2017. [Online]. Available: https://towardsdatascience.com/pytorch-

vs-tensorflow-spotting-the-difference-25c75777377b. [Accessed 29 November 2022].

[43] W3schools, “NumPy Introduction,” W3schools, [Online]. Available:

https://www.w3schools.com/python/numpy/numpy_intro.asp. [Accessed 30

November 2022].

[44] lukewood, “Writing Keras Models With TensorFlow NumPy,” 28 August 2021.

[Online]. Available:

https://keras.io/examples/keras_recipes/tensorflow_numpy_models/. [Accessed 30

November 2022].

[45] InterviewBit, “Pandas Vs NumPy: What’s The Difference? [2022],” InterviewBit, 1

September 2022. [Online]. Available: https://www.interviewbit.com/blog/pandas-vs-

numpy/#:~:text=Pandas%20is%20mostly%20used%20for,easy%20to%20apply%20mat

hematical%20functions.&text=Pandas%20library%20works%20well%20for,heterogen

eous%20types%20of%20data%20simultaneously.. [Accessed 30 November 2022].

[46] MathWorks, “Programming with MATLAB,” MathWorks, [Online]. Available:

https://uk.mathworks.com/products/matlab/programming-with-matlab.html.

[Accessed 1 December 2022].

[47] LabelBox, “Building vs. buying a training data platform,” LabelBox, [Online]. Available:

https://labelbox.com/learn/build-vs-buy/. [Accessed 1 December 2022].

97

[48] Turing, “Python FastAPI vs Flask: A Detailed Comparison,” Turing, [Online]. Available:

https://www.turing.com/kb/fastapi-vs-flask-a-detailed-comparison. [Accessed 1

December 2022].

[49] R. Dabhi, “casting product image data for quality inspection,” [Online]. Available:

https://www.kaggle.com/datasets/ravirajsinh45/real-life-industrial-dataset-of-

casting-product. [Accessed 20 May 2023].

[50] Atlassian, “What is Jira used for?,” Atlassian, [Online]. Available:

https://www.atlassian.com/software/jira/guides/use-cases/what-is-jira-used-

for#jira-for-software-development-teams. [Accessed 28 November 2022].

[51] Keras, “Keras Applications,” [Online]. Available: https://keras.io/api/applications/.

[Accessed 16 May 2023].

[52] DeepAI, “What is an Inception Module?,” [Online]. Available:

https://deepai.org/machine-learning-glossary-and-terms/inception-module.

[Accessed 17 May 2023].

[53] A Name Not Yet Taken AB, “ResNet50 Image Classification in Python,” 27 May 2020.

[Online]. Available: https://www.annytab.com/resnet50-image-classification-in-

python/. [Accessed 19 May 2023].

[54] X. Feng, X. Gao and L. Luo, “A ResNet50-Based Method for Classifying Surface Defects

in Hot-Rolled Strip Steel,” Mathematics, vol. 9, no. 19, p. 1, 2021.

[55] AnalyticsVidhya, “10 Techniques to Solve Imbalanced Classes in Machine Learning

(Updated 2023),” 26 April 2023. [Online]. Available:

https://www.analyticsvidhya.com/blog/2020/07/10-techniques-to-deal-with-class-

imbalance-in-machine-learning/. [Accessed 16 May 2023].

[56] S. Narkhede, “Understanding Confusion Matrix,” 9 May 2018. [Online]. Available:

https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62.

[Accessed 16 May 2023].

[57] J. Korstanje, “The F1 score,” 31 August 2021. [Online]. Available:

https://towardsdatascience.com/the-f1-score-bec2bbc38aa6. [Accessed 16 May

2023].

[58] S. Kumar, “Parameter vs Hyperparameters In Machine Learning,” LinkedIn, 17 January

2023. [Online]. Available: https://www.linkedin.com/pulse/parameter-vs-

hyperparameters-machine-learning-sanjay-kumar-mba-ms-phd/. [Accessed 26 May

2023].

[59] E. Elgeldawi, A. Sayed, A. R. Galal and A. M. Zaki, “Hyperparameter Tuning for

Machine Learning Algorithms Used for Arabic Sentiment Analysis,” Informatics, vol. 8,

no. 2227-9709, 2021.

98

[60] K. Nyuytiymbiy, “Parameters and Hyperparameters in Machine Learning and Deep

Learning,” 30 December 2020. [Online]. Available:

https://towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac.

[Accessed 19 May 2023].

[61] J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei and S.-H. Deng, “Hyperparameter

Optimization for Machine Learning Models Based on Bayesian Optimization,” Journal

of Electronic Science and Technology, vol. 17, no. 1674-862X, pp. 26-40, 2019.

[62] B. Li, “Random Search Plus: A more effective random search for machine learning

hyperparameters optimization,” Master's Thesis, University of Tennessee, 2020.

[63] J. Snoek, H. Larochelle and R. P. Adams, “Practical Bayesian optimization of machine

learning algorithms,” in Advances in neural information processing systems, 2012, pp.

2951-2959.

[64] P. I. Frazier, W. B. Powell and S. Dayanik, “Tutorial on Bayesian optimization,” Journal

of Machine Learning Research, vol. 18, no. 1, pp. 1-52, 2017.

[65] D. J. Murray-Smith, “Sensitivity Analysis for Model Evaluation,” in Testing and

Validation of Computer Simulation Models: Principles, Methods and Applications,

Springer International Publishing, 2015, pp. 49-60.

[66] J. D. Salciccioli, Y. Crutain, M. Komorowski and D. C. Marshall, “Sensitivity Analysis

and Model Validation,” in Secondary Analysis of Electronic Health Records, Springer

International Publishing, 2016, pp. 263-271.

[67] J. B. Maverick, J. R. Brown and P. Rathburn, “How Is Sensitivity Analysis Used?,”

Investopedia, 28 March 2022. [Online]. Available:

https://www.investopedia.com/ask/answers/052115/what-are-some-examples-

ways-sensitivity-analysis-can-be-used.asp. [Accessed 26 May 2023].

[68] G. Teodoro, T. M. Kurç, L. F. R. Taveira, A. C. M. A. Melo, Y. Gao, J. Kong and J. Saltz,

“Algorithm sensitivity analysis and parameter tuning for tissue image segmentation,”

Bioinformatics., vol. 7, no. 33, pp. 1064-1072, 2017.

[69] M. He, B. Li and S. Sun, “A Survey of Class Activation Mapping for the Interpretability

of Convolution Neural Networks,” in International Conference On Signal And

Information Processing, Networking And Computers, San Antonio, TX, 2023.

[70] Y.-h. Sheu, “Illuminating the Black Box: Interpreting Deep Neural Network Models for

Psychiatric Research,” Frontiers in Psychiatry, vol. 11, no. 1664-0640, 2020.

[71] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh and D. Batra, Grad-CAM:

Visual Explanations from Deep Networks via Gradient-based Localization, 1610.02391,

2019.

99

[72] R. L. Draelos and L. Carin, Use HiResCAM instead of Grad-CAM for faithful

explanations of convolutional neural networks, 2011.08891, 2021.

[73] H. Talebi and P. Milanfar, Learning to Resize Images for Computer Vision Tasks,

2103.09950: arXiv, 2021.

[74] Keras, “VGG16 and VGG19,” [Online]. Available:

https://keras.io/api/applications/vgg/. [Accessed 26 May 2023].

[75] H. Lin, W. Zeng, X. Ding, Y. Huang, C. Huang and J. Paisley, Learning Rate Dropout,

1912.00144: arXiv, 2019.

[76] L. Zeng, H. Zhang, Y. Li, M. Li and S. Wang, “Supervision dropout: guidance learning in

deep neural network,” Multimedia Tools and Applications, vol. 18850, no. 12, p.

18831, 2023.

[77] E. Zvornicanin, “Relation Between Learning Rate and Batch Size,” Baeldung, 16 March

2023. [Online]. Available: https://www.baeldung.com/cs/learning-rate-batch-size.

[Accessed 21 May 2023].

[78] J. Brownlee, “A Gentle Introduction to Dropout for Regularizing Deep Neural

Networks,” Machine Learning Mastery, 3 December 2018. [Online]. Available:

https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-

networks/. [Accessed 27 May 2023].

[79] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, 1412.6980: arXiv,

2017.

[80] Sakshii, “Adam optimizer: A Quick Introduction,” AskPython, 27 February 2023.

[Online]. Available: https://www.askpython.com/python/examples/adam-optimizer.

[Accessed 21 May 2023].

[81] StackOverflow, “Dropout rate guidance for hidden layers in a convolution neural

network,” 24 December 2017. [Online]. Available:

https://stackoverflow.com/questions/47892505/dropout-rate-guidance-for-hidden-

layers-in-a-convolution-neural-network. [Accessed 21 May 2023].

[82] K. Ajitesh, “Weight Decay in Machine Learning: Concepts,” 7 June 2022. [Online].

Available: https://vitalflux.com/weight-decay-in-machine-learning-concepts/.

[Accessed 27 May 2023].

[83] S. Bock, J. Goppold and M. Weiß, An improvement of the convergence proof of the

ADAM-Optimizer, 1804.10587: arXiv, 2018.

[84] N. B. Harikrishnan, “Confusion Matrix, Accuracy, Precision, Recall, F1 Score,” Analytics

Vidhya, 10 December 2019. [Online]. Available: https://medium.com/analytics-

vidhya/confusion-matrix-accuracy-precision-recall-f1-score-ade299cf63cd. [Accessed

28 May 2023].

100

[85] C. Helbig, “Losses and lifetimes of metals in the economy,” 2022. [Online]. Available:

https://www.nature.com/articles/s41893-022-00895-8. [Accessed 6 November 2022].

[86] D. Tabernik, S. Šela, J. Skvarč and D. Skočaj, “Segmentation-based deep-learning

approach for surface-defect detection,” Journal of Intelligent Manufacturing, vol. 31,

pp. 759-776, 2020.

[87] C. P. Maria Petrou, Image Processing: The Fundamentals, 2nd ed., Chichester: John

Wiley and Sons, Ltd., 2010.

[88] L. M. N. E. F. C. L. M. G. Fonseca, “"Digital Image Processing in Remote Sensing", 2009

Tutorials of the XXII Brazilian Symposium on Computer Graphics and Image

Processing,” 2009.

[89] MathWorks, “Enhancement methods in image processing,” [Online]. Available:

https://uk.mathworks.com/discovery/image-enhancement.html. [Accessed 24

November 2022].

[90] O. Patel, Y. P. S. Maravi and S. Sharma, “A Comparative Study of Histogram

Equalization Based Image Enhancement Techniques for Brightness Preservation and

Contrast Enhancement,” Signal & Image Processing : An International Journal, vol. 4,

no. 5, pp. 11-25, 2013.

[91] M. Elgendy, “The Computer Vision Pipeline, Part 4: feature extraction,” 2020. [Online].

Available: https://freecontent.manning.com/the-computer-vision-pipeline-part-4-

feature-extraction/. [Accessed 25 November 2022].

[92] S. Balaji, “Binary Image classifier CNN using TensorFlow,” 29 August 2020. [Online].

Available: https://medium.com/techiepedia/binary-image-classifier-cnn-using-

tensorflow-a3f5d6746697. [Accessed 27 November 2022].

[93] P. Damacharla, A. R. M. V., J. Ringenberg and A. Y. Javaid, “TLU-Net: A Deep Learning

Approach for Automatic Steel Surface Defect Detection,” in 2021 International

Conference on Applied Artificial Intelligence (ICAPAI), 2021.

[94] P. Huilgol, “Top 4 Pre-Trained Models for Image Classification with Python Code,”

AnalyticsVidhya, 12 May 2023. [Online]. Available:

https://www.analyticsvidhya.com/blog/2020/08/top-4-pre-trained-models-for-

image-classification-with-python-code/. [Accessed 16 May 2023].

[95] Z. Wharton, A. Behera and A. Bera, An attention-driven hierarchical multi-scale

representation for visual recognition, 2110.12178, 2021.

[96] G. Rohini, “Everything you need to know about VGG16,” 23 September 2021. [Online].

Available: https://medium.com/@mygreatlearning/everything-you-need-to-know-

about-vgg16-7315defb5918. [Accessed 17 May 2023].

101

[97] M. Shaha and M. Pawar, “Transfer Learning for Image Classification,” in 2018 Second

International Conference on Electronics, Communication and Aerospace Technology

(ICECA), 2018, pp. 656-660.

[98] Datagen, “Understanding VGG16: Concepts, Architecture, and Performance,” [Online].

Available: https://datagen.tech/guides/computer-vision/vgg16/. [Accessed 17 May

2023].

[99] Google Cloud, “Advanced Guide to Inception v3,” [Online]. Available:

https://cloud.google.com/tpu/docs/inception-v3-advanced. [Accessed 17 May 2023].

[100] S. Mukherjee, “The Annotated ResNet-50,” 18 August 2022. [Online]. Available:

https://towardsdatascience.com/the-annotated-resnet-50-a6c536034758. [Accessed

19 May 2023].

[101] MathWorks, “Investigate Network Predictions Using Class Activation Mapping,”

MathWorks, [Online]. Available:

https://www.mathworks.com/help/deeplearning/ug/investigate-network-

predictions-using-class-activation-mapping.html. [Accessed 19 May 2023].

[102] A. Makris, I. Kontopoulos and K. Tserpes, “COVID-19 detection from chest X-Ray

images using Deep Learning and Convolutional Neural Networks,” medRxiv, no.

10.1101/2020.05.22.20110817, 2020.

102

Appendix
Miscellaneous

Ethics Form

103

Project Directory Structure

104

requirements.txt

absl-py==1.3.0

asttokens==2.2.1

astunparse==1.6.3

async-timeout==4.0.2

backcall==0.2.0

bayesian-optimization==1.4.3

cachelib==0.10.2

cachetools==5.2.0

certifi==2022.9.24

charset-normalizer==2.1.1

click==8.1.3

colorama==0.4.6

contourpy==1.0.7

cycler==0.11.0

decorator==5.1.1

executing==1.2.0

Flask==2.2.3

Flask-Session==0.4.0

flatbuffers==22.11.23

fonttools==4.38.0

gast==0.4.0

google-auth==2.14.1

google-auth-oauthlib==0.4.6

google-pasta==0.2.0

grpcio==1.51.1

h5py==3.7.0

idna==3.4

importlib-metadata==6.0.0

importlib-resources==5.12.0

imutils==0.5.4

ipython==8.11.0

itsdangerous==2.1.2

jedi==0.18.2

Jinja2==3.1.2

joblib==1.2.0

keras==2.10.0

Keras-Preprocessing==1.1.2

kiwisolver==1.4.4

libclang==14.0.6

Markdown==3.4.1

MarkupSafe==2.1.1

matplotlib==3.7.0

matplotlib-inline==0.1.6

105

numpy==1.23.5

oauthlib==3.2.2

opencv-python==4.6.0.66

opt-einsum==3.3.0

packaging==21.3

pandas==1.5.3

parso==0.8.3

pickleshare==0.7.5

Pillow==9.4.0

prompt-toolkit==3.0.38

protobuf==3.19.6

pure-eval==0.2.2

pyasn1==0.4.8

pyasn1-modules==0.2.8

Pygments==2.14.0

pyparsing==3.0.9

python-dateutil==2.8.2

pytz==2022.7.1

requests==2.28.1

requests-oauthlib==1.3.1

rsa==4.9

scikit-learn==1.2.1

scipy==1.10.1

six==1.16.0

stack-data==0.6.2

tensorboard==2.10.1

tensorboard-data-server==0.6.1

tensorboard-plugin-wit==1.8.1

tensorflow==2.10.1

tensorflow-estimator==2.10.0

tensorflow-io-gcs-filesystem==0.28.0

termcolor==2.1.1

threadpoolctl==3.1.0

traitlets==5.9.0

typing_extensions==4.4.0

urllib3==1.26.13

wcwidth==0.2.6

Werkzeug==2.2.2

wrapt==1.14.1

zipp==3.14.0

106

Application Code

app.py

import os

import threading

import time

import uuid

from io import BytesIO

import base64

from flask import Flask, render_template, request, jsonify

from localization import is_defective, save_activation_map

from PIL import Image

app = Flask(__name__)

app.config.from_object(__name__)

def garbage_collection(path: str, time_seconds: int):

 time.sleep(time_seconds)

 if os.path.exists(path):

 os.remove(path)

 exit(0)

@app.route('/', methods=['GET'])

def index():

 return render_template('index.html')

@app.route('/process-image', methods=['POST'])

def upload():

 if not request.files['raw_image']:

 return 'No file uploaded'

 else:

 # Get the image from the request

 image = request.files['raw_image']

 # Save the image to the tmp folder

 file_name = str(uuid.uuid4().hex)

 image_path = f"tmp/{file_name}.jpeg"

 output_image_path = os.path.join('tmp', f'{file_name}-output.png')

 image.save(image_path)

 # Check if the image is defective + delete the image after 15 seconds

107

 threading.Thread(target=garbage_collection, args=(image_path, 15),

daemon=True).start()

 defective, confidence = is_defective(image_path)

 if defective:

 save_activation_map(image_path)

 # Plot and save the output image to the tmp folder + delete the image

after 60 seconds

 threading.Thread(target=garbage_collection, args=(output_image_path,

60), daemon=True).start()

 with Image.open(output_image_path) as img:

 image_data = BytesIO()

 img.save(image_data, format='PNG')

 image_data.seek(0)

 # Encode the image data as base64

 base64_image = base64.b64encode(image_data.getvalue()).decode()

 response = {'image': base64_image,

 'is_defective': defective,

 'confidence': confidence}

 return jsonify(response)

 else:

 response = {'is_defective': defective,

 'confidence': confidence}

 return jsonify(response)

108

localization.py

import os

import matplotlib

import matplotlib.pyplot as plt

import numpy as np

import scipy as sp

import tensorflow as tf

from PIL import Image

from train import train_model

from tensorflow.keras.models import load_model

matplotlib.use('Agg')

if not os.path.exists('transfer-trained-vgg16.h5'):

 print("Model not found!\nTraining model...")

 model = train_model()

print("Loading trained model...")

model = load_model('transfer-trained-vgg16.h5')

def is_defective(image_path):

 with Image.open(image_path) as img:

 img = img.resize((512, 512))

 image = np.array(img)

 # Normalize the image

 image = image / 255.0

 # Make a prediction on the image using the model

 pred = model.predict(image[np.newaxis,:,:,:])

 confidence_percentage = np.max(pred) * 100

 # Check if the predicted class is 0 (defective)

 if np.argmax(pred) == 0:

 return True, confidence_percentage

 else:

 return False, confidence_percentage

weights = model.layers[-1].get_weights()[0]

class_weights = weights[:, 0]

109

intermediate = tf.keras.Model(model.input,

model.get_layer("block5_conv3").output)

def save_activation_map(image_path):

 # Load the image file and convert it to a NumPy array

 with Image.open(image_path) as img:

 img = img.resize((512, 512))

 image = np.array(img)

 conv_output = intermediate.predict(image[np.newaxis,:,:,:])

 conv_output = np.squeeze(conv_output)

 h = int(image.shape[0]/conv_output.shape[0])

 w = int(image.shape[1]/conv_output.shape[1])

 activation_maps = sp.ndimage.zoom(conv_output, (h, w, 1), order=1)

 out = np.dot(activation_maps.reshape((image.shape[0]*image.shape[1], 512)),

class_weights).reshape(

 image.shape[0],image.shape[1])

 fig, axs = plt.subplots(figsize=(6, 6))

 axs.imshow(image)

 axs.imshow(out, cmap='jet', alpha=0.35)

 axs.axis('off')

 plt.tight_layout()

 # Save the figure to the tmp folder

 file_name = os.path.splitext(os.path.basename(image_path))[0]

 fig.savefig(os.path.join('tmp', f'{file_name}-output.png'))

 plt.close(fig)

110

train.py

import os

import random

import numpy as np

import tensorflow as tf

from tensorflow.keras.applications import VGG16

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.preprocessing.image import ImageDataGenerator

def set_seed(seed):

 tf.random.set_seed(seed)

 os.environ['PYTHONHASHSEED'] = str(seed)

 np.random.seed(seed)

 random.seed(seed)

def get_model(SHAPE: tuple):

 set_seed(33)

 vgg = VGG16(weights='imagenet', include_top=False, input_shape = SHAPE)

 for layer in vgg.layers[:-8]:

 layer.trainable = False

 x = vgg.output

 x = tf.keras.layers.GlobalAveragePooling2D()(x)

 x = tf.keras.layers.Dense(2, activation="softmax")(x)

 model = tf.keras.Model(vgg.input, x)

 model.compile(loss = "categorical_crossentropy",

 optimizer = Adam(learning_rate=0.0001),

 metrics=["accuracy"])

 return model

def train_model():

 # Define variables

 SHUFFLE = True

 SHAPE = (512, 512, 3)

 batch_size = 8

111

 # Load and preprocess the datasets

 root_dir = 'C:/Programming/FinalYearProject/dataset512x512'

 train_datagen = ImageDataGenerator(

 validation_split=0.2, rescale=1./255

)

 validation_datagen = ImageDataGenerator(

 validation_split=0.2, rescale=1./255

)

 train_generator = train_datagen.flow_from_directory(

 root_dir,

 target_size = (SHAPE[0], SHAPE[1]),

 batch_size = batch_size,

 class_mode = 'categorical',

 shuffle = SHUFFLE,

 subset = 'training',

 seed = 33

)

 validation_generator = validation_datagen.flow_from_directory(

 root_dir,

 target_size = (SHAPE[0], SHAPE[1]),

 batch_size = batch_size,

 class_mode = 'categorical',

 shuffle = SHUFFLE,

 subset = 'validation',

 seed = 33

)

 model = get_model(SHAPE)

 model.fit(train_generator,

 validation_data=validation_generator,

 epochs=50)

 model.save('transfer-trained-vgg16.h5')

if __name__ == "__main__":

 train_model()

112

main.py

from app import app

if __name__ == '__main__':

 app.run(debug=True)

113

index.html

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0-

alpha1/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-

GLhlTQ8iRABdZLl6O3oVMWSktQOp6b7In1Zl3/Jr59b6EGGoI1aFkw7cmDA6j6gD"

crossorigin="anonymous">

 <link rel="stylesheet" href="../static/css/style.css">

 <title>Defect Checker</title>

</head>

<body>

 <div id="content p-5" class="flexbox">

 <div class="card flexbox p-3 mt-5" style="min-width: 400px; max-width:

800px; max-height: 500px;">

 <div class="card-body flexbox">

 <div class="row">

 <div class="col p-4">

 <div id="image-box">

 <!-- Image added here with heatmap/boxes when

uploaded using js -->

 </div>

 </div>

 </div>

 <div class="row">

 <div class="col">

 <div id="loader" style="display:none;">

 <img src="{{ url_for('static',

filename='loading.gif') }}">

 </div>

 </div>

 </div>

 <div class="row">

 <div class="col">

 <h2 id="defective-status"></h2>

 <h5 id="confidence"></h5>

 </div>

 <div class="col">

 <input type="file" accept="image/png, image/jpeg">

 </div>

 </div>

114

 </div>

 </div>

 </div>

 <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0-

alpha1/dist/js/bootstrap.bundle.min.js" integrity="sha384-

w76AqPfDkMBDXo30jS1Sgez6pr3x5MlQ1ZAGC+nuZB+EYdgRZgiwxhTBTkF7CXvN"

crossorigin="anonymous"></script>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.3/jquery.min.js"></script>

 <script>

 $(document).ready(function (e) {

 $('input[type="file"]').change(function () {

 let file = this.files[0];

 let reader = new FileReader();

 reader.onloadend = function () {

 $('#image-box').html('<image id="img" src="' + reader.result

+ '" style="max-width: 100%;"/>');

 }

 if (file) {

 let formData = new FormData();

 formData.append('raw_image', file);

 reader.readAsDataURL(file);

 $.ajax({

 url: "/process-image",

 type: 'POST',

 data: formData,

 processData: false,

 contentType: false,

 beforeSend: function(){

 $("#image-box").hide();

 $("#loader").show();

 $("#defective-status").html("");

 $("#confidence").html("");

 },

 success: function(response){

 $("#image-box").show();

 $("#loader").hide();

 if (response && response.is_defective !== undefined)

{

 var confidence = response.confidence;

 $("#confidence").html("Confidence: " +

confidence.toFixed(2) + "%");

 if (response.is_defective) {

 $("#defective-status").html("Defective");

 let base64data = response.image;

115

 $("#img").attr("src",

"data:image/png;base64," + base64data);

 } else {

 $("#defective-status").html("Not Defective");

 }

 } else {

 alert("Invalid response from the server.");

 }

 },

 error: function(xhr, desc, err){

 $("#loader").hide();

 alert("Something went wrong! Please try again.");

 }

 });

 } else {

 alert("Image upload failed!");

 }

 });

 });

 </script>

</body>

</html>

116

style.css

.flexbox {

 display: flex;

 align-items: center;

 justify-content: center;

}

117

Experiment Code

comparison.py

import os

import random

import numpy as np

import tensorflow as tf

from tensorflow.keras.applications import VGG16, InceptionV3, ResNet50

from tensorflow.keras.layers import Conv2D, Dense, Flatten, MaxPooling2D

from tensorflow.keras.models import Sequential

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.preprocessing.image import ImageDataGenerator

Prevent GPU memory allocation issues

gpus = tf.config.experimental.list_physical_devices('GPU')

if gpus:

 try:

 for gpu in gpus:

 tf.config.experimental.set_memory_growth(gpu, True)

 except RuntimeError as e:

 print(e)

Define variables

SHUFFLE = True

SHAPE = (128, 128, 3)

batch_size = 8

Load and preprocess the datasets

root_dir = 'C:/Programming/FinalYearProject/dataset512x512'

train_datagen = ImageDataGenerator(

 validation_split=0.2, rescale=1./255

)

test_datagen = ImageDataGenerator(

 validation_split=0.2, rescale=1./255

)

train_generator = train_datagen.flow_from_directory(

 root_dir,

 target_size = (SHAPE[0], SHAPE[1]),

 batch_size = batch_size,

 class_mode = 'categorical',

 shuffle = SHUFFLE,

 subset = 'training',

118

 seed = 33

)

validation_generator = test_datagen.flow_from_directory(

 root_dir,

 target_size = (SHAPE[0], SHAPE[1]),

 batch_size = batch_size,

 class_mode = 'categorical',

 shuffle = SHUFFLE,

 subset = 'validation',

 seed = 33

)

def set_seed(seed):

 tf.random.set_seed(seed)

 os.environ['PYTHONHASHSEED'] = str(seed)

 np.random.seed(seed)

 random.seed(seed)

def build_custom_model(SHAPE: tuple):

 model = Sequential([

 Conv2D(32, 3, padding='same', activation='relu', input_shape=SHAPE),

 MaxPooling2D(),

 Conv2D(64, 3, padding='same', activation='relu'),

 Conv2D(64, 3, padding='same', activation='relu'),

 MaxPooling2D(),

 Conv2D(128, 3, padding='same', activation='relu'),

 Conv2D(128, 3, padding='same', activation='relu'),

 MaxPooling2D(),

 Flatten(),

 Dense(1024, activation='relu'),

 Dense(1024, activation='relu'),

 Dense(2, activation='sigmoid')

])

 model.compile(optimizer=Adam(learning_rate=0.0001),

 loss="categorical_crossentropy",

 metrics=['accuracy'])

 return model

def build_model(name: str, SHAPE: tuple):

 set_seed(33)

 if name == "custom":

119

 return build_custom_model(SHAPE)

 if name == "vgg16":

 base_model = VGG16(weights='imagenet', include_top=False,

input_shape=SHAPE)

 base_model.summary()

 elif name == "inceptionv3":

 base_model = InceptionV3(weights='imagenet', include_top=False,

input_shape=SHAPE)

 base_model.summary()

 elif name == "resnet50":

 base_model = ResNet50(weights='imagenet', include_top=False,

input_shape=SHAPE)

 base_model.summary()

 else:

 raise Exception("Invalid model name")

 for layer in base_model.layers[:-5]:

 layer.trainable = False

 x = base_model.output

 x = tf.keras.layers.GlobalAveragePooling2D()(x)

 x = tf.keras.layers.Dense(2, activation="softmax")(x)

 model = tf.keras.Model(base_model.input, x)

 model.compile(optimizer=Adam(learning_rate=0.0001),

 loss="categorical_crossentropy",

 metrics=['accuracy'])

 return model

def train_model(name: str, model):

 history = model.fit(train_generator,

 validation_data=validation_generator,

 steps_per_epoch=train_generator.samples/train_generator.batch_size,

 epochs=10)

 model.save(f'trained-{name}.h5')

 print(f"Saved model: trained-{name}.h5")

 return history

Define a function to calculate TP, TN, FP, FN rates

def calculate_rates(y_true_labels, y_pred_labels):

120

 # Calculate the confusion matrix metrics

 tn = tf.keras.metrics.TrueNegatives()

 tn.update_state(y_true_labels, y_pred_labels)

 fp = tf.keras.metrics.FalsePositives()

 fp.update_state(y_true_labels, y_pred_labels)

 fn = tf.keras.metrics.FalseNegatives()

 fn.update_state(y_true_labels, y_pred_labels)

 tp = tf.keras.metrics.TruePositives()

 tp.update_state(y_true_labels, y_pred_labels)

 # Get the TP, TN, FP, FN rates

 tp_rate = tp.result().numpy()

 tn_rate = tn.result().numpy()

 fp_rate = fp.result().numpy()

 fn_rate = fn.result().numpy()

 return tp_rate, tn_rate, fp_rate, fn_rate

def calculate_metrics(y_true, y_pred, name: str):

 tp, tn, fp, fn = calculate_rates(y_true, y_pred)

 # Calculate the accuracy, precision, recall, and F1-score

 accuracy = (tp + tn) / (tp + tn + fp + fn)

 precision = tp / (tp + fp)

 recall = tp / (tp + fn)

 f1_score = 2 * precision * recall / (precision + recall)

 print("\n===")

 print("{}".format(name))

 # Print the confusion matrix

 print("Confusion Matrix:")

 print(" Predicted Negative Predicted Positive")

 print("Actual Negative {} {}".format(tn, fp))

 print("Actual Positive {} {}".format(fn, tp))

 # Print the performance metrics

 print("Accuracy: {:.3f}".format(accuracy))

 print("Precision: {:.3f}".format(precision))

 print("Recall: {:.3f}".format(recall))

 print("F1-score: {:.3f}".format(f1_score))

 print("===\n")

def evaluate_model(model, y_true, name: str):

 y_pred = model.predict(validation_generator, verbose=0)

 y_pred = np.argmax(y_pred, axis=1)

121

 calculate_metrics(y_true, y_pred, name)

def train_models():

 ### TRAIN MODELS ###

 custom_model = build_model("custom", SHAPE)

 vgg16 = build_model("vgg16", SHAPE)

 inceptionv3 = build_model("inceptionv3", SHAPE)

 resnet50 = build_model("resnet50", SHAPE)

 trained_custom_model = train_model("custom", custom_model)

 trained_vgg16 = train_model("vgg16", vgg16)

 trained_inceptionv3 = train_model("inceptionv3", inceptionv3)

 trained_resnet50 = train_model("resnet50", resnet50)

 # Get the training accuracy of each model

 custom_model_training_accuracy = trained_custom_model.history['accuracy'][-1]

 vgg16_training_accuracy = trained_vgg16.history['accuracy'][-1]

 inceptionv3_training_accuracy = trained_inceptionv3.history['accuracy'][-1]

 resnet50_training_accuracy = trained_resnet50.history['accuracy'][-1]

 # Output the training accuracy of each model

 print("Custom Model Training Accuracy: ", custom_model_training_accuracy)

 print("VGG16 Training Accuracy: ", vgg16_training_accuracy)

 print("InceptionV3 Training Accuracy: ", inceptionv3_training_accuracy)

 print("ResNet50 Training Accuracy: ", resnet50_training_accuracy)

 return trained_custom_model, trained_vgg16, trained_inceptionv3,

trained_resnet50

def load_trained_models():

 ### LOAD TRAINED MODELS ###

 custom = tf.keras.models.load_model('trained-custom.h5')

 vgg16 = tf.keras.models.load_model('trained-vgg16.h5')

 inceptionv3 = tf.keras.models.load_model('trained-inceptionv3.h5')

 resnet50 = tf.keras.models.load_model('trained-resnet50.h5')

 return custom, vgg16, inceptionv3, resnet50

def evaluate_models(custom, vgg16, inceptionv3, resnet50):

 ### EVALUATE MODELS - DISABLE SHUFFLE ON DATASETS ###

 y_true = validation_generator.classes

 evaluate_model(custom, y_true,"Custom Model")

 evaluate_model(vgg16, y_true,"VGG16 (Transfer Learning)")

 evaluate_model(inceptionv3, y_true,"InceptionV3 (Transfer Learning)")

 evaluate_model(resnet50, y_true,"ResNet50 (Transfer Learning)")

122

UNCOMMENT FOR TRAINING + CHANGE SHUFFLE TO TRUE ###

train_models()

UNCOMMENT FOR EVALUATION + CHANGE SHUFFLE TO FALSE ###

custom, vgg16, inceptionv3, resnet50 = load_trained_models()

evaluate_models(custom, vgg16, inceptionv3, resnet50)

123

hyperparameters.py

import tensorflow as tf

from tensorflow.keras import Sequential

from tensorflow.keras.layers.experimental.preprocessing import Rescaling,

Resizing

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

from tensorflow.keras.optimizers import Adam

from bayes_opt import BayesianOptimization

root_dir = 'C:/Programming/FinalYearProject/dataset512x512'

Define your train and validation datasets

train_ds = tf.keras.preprocessing.image_dataset_from_directory(

 root_dir,

 validation_split=0.2,

 subset="training",

 seed=123,

 image_size=(512, 512),

 batch_size=32,

 labels="inferred",

 label_mode="binary",

 color_mode="rgb"

)

val_ds = tf.keras.preprocessing.image_dataset_from_directory(

 root_dir,

 validation_split=0.2,

 subset="validation",

 seed=123,

 image_size=(512, 512),

 batch_size=32,

 labels="inferred",

 label_mode="binary",

 color_mode="rgb"

)

def build_model(learning_rate, dropout_rate):

 model = Sequential([

 Rescaling(1./255, input_shape=(512, 512, 3)),

 Resizing(128, 128),

 Conv2D(32, 3, padding='same', activation='relu'),

 MaxPooling2D(),

 Conv2D(64, 3, padding='same', activation='relu'),

 Conv2D(64, 3, padding='same', activation='relu'),

 MaxPooling2D(),

124

 Conv2D(128, 3, padding='same', activation='relu'),

 Conv2D(128, 3, padding='same', activation='relu'),

 MaxPooling2D(),

 Flatten(),

 Dense(1024, activation='relu'),

 Dense(1024, activation='relu'),

 Dense(2, activation='sigmoid')

])

 # Compile the model with the specified learning rate and dropout rate

 optimizer = Adam(learning_rate=learning_rate)

 model.compile(optimizer=optimizer,

 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=

False),

 metrics=['accuracy'])

 # Set the dropout rate for applicable layers

 for layer in model.layers:

 if isinstance(layer, tf.keras.layers.Dropout):

 layer.rate = dropout_rate

 return model

Define the function to optimize

def optimize_model(learning_rate, dropout_rate):

 # Build the model

 model = build_model(learning_rate, dropout_rate)

 # Train the model

 history = model.fit(train_ds, validation_data=val_ds, epochs=50, verbose=0)

 # Get the best validation accuracy

 best_val_accuracy = max(history.history['val_accuracy'])

 return best_val_accuracy

if __name__ == '__main__':

 # Define the hyperparameter search space

 hyperparameter_space = {

 'learning_rate': (0.0005, 0.001),

 'dropout_rate': (0.2, 0.5)

 }

 # Perform Bayesian optimization

125

 optimizer = BayesianOptimization(f=optimize_model,

pbounds=hyperparameter_space, verbose=2)

 optimizer.maximize(init_points=3, n_iter=10)

 # Get the best hyperparameters and the corresponding validation accuracy

 best_hyperparameters = optimizer.max['params']

 best_val_accuracy = optimizer.max['target']

 print("Best Hyperparameters:")

 print(best_hyperparameters)

 print("Best Validation Accuracy:")

 print(best_val_accuracy)

126

graph.py

from matplotlib import pyplot as plt

from hyperparameters import build_model, train_ds, val_ds

EPOCHS = 50

LEARNING_RATE = 0.0006425108307104302

DROPOUT_RATE = 0.46386941186999164

model = build_model(LEARNING_RATE, DROPOUT_RATE)

history = model.fit(train_ds, validation_data=val_ds, epochs=EPOCHS, verbose=1)

model.save('C:/Programming/FinalYearProject/tuned-trained-model.h5')

Assigning the history of the model to variables

acc = history.history['accuracy']

val_acc = history.history['val_accuracy']

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs_range = range(EPOCHS)

Plotting the training and validation accuracy and loss

plt.figure(figsize=(18, 8))

plt.subplot(1, 2, 1)

plt.plot(epochs_range, acc, label='Training Accuracy')

plt.plot(epochs_range, val_acc, label='Validation Accuracy')

plt.legend(loc='lower right')

plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)

plt.plot(epochs_range, loss, label='Training Loss')

plt.plot(epochs_range, val_loss, label='Validation Loss')

plt.legend(loc='upper right')

plt.title('Training and Validation Loss')

plt.show()

127

dataset.py

import tensorflow as tf

from matplotlib import pyplot as plt

root_dir = 'C:/Programming/FinalYearProject/dataset512x512'

Define your train and validation datasets

train_ds = tf.keras.preprocessing.image_dataset_from_directory(

 root_dir,

 validation_split=0.2,

 subset="training",

 seed=123,

 image_size=(512, 512),

 batch_size=32,

 labels="inferred",

 label_mode="binary",

 color_mode="rgb"

)

val_ds = tf.keras.preprocessing.image_dataset_from_directory(

 root_dir,

 validation_split=0.2,

 subset="validation",

 seed=123,

 image_size=(512, 512),

 batch_size=32,

 labels="inferred",

 label_mode="binary",

 color_mode="rgb"

)

Print the class names

class_names = train_ds.class_names

print(class_names)

Visualize the dataset

plt.figure(figsize=(10, 10))

for images, labels in train_ds.take(1):

 for i in range(9):

 ax = plt.subplot(3, 3, i + 1)

 plt.imshow(images[i].numpy().astype("uint8"))

 plt.title(class_names[labels[i].numpy()[0].astype(int)])

 plt.axis("off")

plt.show()

