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Abstract 
 

This report proposes a faster, more efficient approach to existing automated surface defect 

detection architectures, using a deep learning model based on R-CNN. The efficacy of machine 

learning and deep neural network models is highly reliant on being provided with a high-quality 

and representative dataset, therefore the research carried out in this report also proposes the 

use of relevant data pre-processing methods for the model to produce accurate results. The 

testing and modelling are carried out in the context of metal casting in submersible pump 

impellers. In addition to the production of a model, there is a comparison to existing machine 

learning architectures and a proof of concept in the form of a web-based graphical user interface 

that demonstrates the model’s applicability to the industry. 
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1. Introduction 
 

The main output of this project is to develop and train a deep learning model based on the existing 

R-CNN architecture, which can process images of submersible pump impellers and identify, 

categorize, and localize casting defects. 

 

1.1 Background 

For approximately every thousand tons of metallic castings, seventy-five tons must be re-melted 

due to defects [1]. The average lifespan of a metal is less than 10 years. Metal production accounts 

for roughly 8% of global greenhouse gas emissions [2], so detecting defects earlier on in the 

manufacturing process means: most metals won’t need to be re-melted and cycled through the 

process again. This reduces greenhouse gas emissions, metal wastage, and the necessity to mine 

more. Accordingly, Helbig states: “the longer we use metals, the less we need to mine.” 

Using this artificial intelligence (AI), defects are detected earlier on, which will significantly reduce 

the chance of cast metals being lost to landfills or recycling plants, which currently accounts for 

84% of cumulative metal loss globally [2]. 

In comparison to surface defect detection of other surfaces, such as liquid crystalline displays 

(LCDs), accurate detection of defects on metallic surfaces is much more prone to error, due to the 

high reflectance, resulting in skewed outcomes by slight changes in lighting conditions [3]. As a 

result, more advanced detection methods must be incorporated in place of traditional image 

processing techniques to increase precision and reliability across a wider range of environmental 

conditions. 
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According to Tabernik et al. (2020), deep learning techniques have become the best approach for 

this task. The leading factors are accuracy and the reduced need for domain knowledge required 

to identify and categorise anomalies in images. Despite their overall suitability in surface 

detection problems; the processing power and storage requirements of convolutional neural 

networks (CNNs) are significantly higher, majorly limiting hardware flexibility [4]. The mechanism 

is a ‘black box’, which makes it next to impossible to accurately troubleshoot specific issues.  

Although in some domains – such as data mining applications with a high monetary stake (i.e., 

banking) – the lack of transparency in artificial neural networks (ANNs) is unacceptable. However, 

in the context of the scope of this report, this is not an issue as there is no chance of the 

architecture causing further revenue loss; its effectiveness is measured by its minimisation of loss 

– as will be discussed in Aims and Objectives. 

 

1.2 Research Motivation 

It is no secret that AI is one of the most exciting and controversial technological advancements of 

the 21st century. As of 2022, the global AI market is valued at over $136 billion. This is projected 

to increase by over thirteen-times over the next 8 years. By 2025, as many as ninety-seven million 

people will work in the AI sector, and 83% of companies claim that AI is a top priority in their 

business plan. Netflix alone makes $1 billion annually from automated personalised 

recommendations [5]. 

Many industries are trying to adopt Industry 4.0 and AI techniques to improve their production 

quality and efficiency. The process of quality control has remained unchanged for decades until 

recent developments in automated defect detection solutions. The introduction of systems 
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utilising more advanced technologies has greatly improved the accuracy of anomaly detection in 

manufacturing; however, these newer systems and their underlying algorithms (as previously 

mentioned) largely require a high degree of computational power, and a tedious calibration 

process [6]. Hence in this research, an efficient and lightweight solution is proposed to overcome 

this challenge. 

 

1.3 Research Questions 

This project aims to provide an answer to the following questions: 

• How do the accuracy and speed of existing deep learning techniques compare to a novel 

deep neural network for surface defect detection problems? 

• What are the important characteristics of an efficient and user-friendly surface defect 

detection application? 

• How can R-CNN be adapted to surface defect detection to make it faster at an acceptable 

accuracy? 

1.4 Aim and Objectives 

1.4.1 Project Aim 

 

The main aim of this project is to reduce the loss in revenue in the metal casting industry caused 

by casting defects: by providing companies and organisations with a deep learning (DL) 

architecture, which could be used by employees to quickly scan and log the defects. This data 

could be collated and statistically analysed to identify the most effective actions to reduce the 

frequency of the most commonly occurring defects. 
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1.4.2 Objectives 

 

• Research existing defect detection solutions: Investigate and evaluate solutions provided 

using either traditional techniques or deep learning methods. 

• Obtain and divide a dataset: Find a relevant dataset (images of the surface of SPIs) with 

enough samples and divide that into training and validation subsets. 

• Create labels for the dataset: Using appropriate software, create categories for types of 

casting defects and manually classify them in images to aid in model training. 

• Create a design for the neural network: Plan out the number of layers, arrangement, and 

number of output parameters for the network, based on the R-CNN architecture. 

• Program the network: Translate the network design to code, using relevant languages, 

technologies, and modules. 

• Train the network: Run the neural network using the training dataset as the input. 

• Assess the accuracy of the network: Run the neural network using the validation dataset 

as the input and evaluate the accuracy of detection and categorisation. 

• Re-evaluate the design: Repeat training and testing and modify the design until the 

accuracy is sufficient. 

• Create a functional front-end: Provide a graphical user interface for user interaction with 

the model. 

 

1.5 Research Scope 

The project will consist of the development of a deep learning-based architecture derived from 

training, testing, and validation using a publicly available dataset of images consisting of the front 
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surface of submersible pump impellers. There will be a web application that will show a live feed 

of a camera, which will display bounding boxes around the defects with an appropriate categorical 

label. 

 

1.6 Report Structure 

This report will be structured accordingly: a Literature Review section, in which existing research 

on topics within the scope will be discussed and explored; a Technical Review section, which will 

explore and compare relevant technologies for the development of the project; a Research 

Methodology section, which outlines the research and  development methodology, as well as 

defining requirements; a Results and Discussion section, providing an overview of the output of 

the project and discussing findings; and a Conclusion and Further Work section, which verifies 

the study, outlines limitations encountered, and an overview of potential further work. 
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2. Literature Review 
2.1 Image Processing 

According to Petrou (2010), the purposes of image processing are image enhancement, 

compression, restoration, and feature extraction. Apart from compression, these processes all 

aim to make a digital image more interpretable by either human or automatic analysis [7]. Image 

enhancement is an important task in computer vision applications, as it provides necessary pre-

processing to facilitate the improvement or removal of low-quality data – increasing the 

effectiveness of further processing such as feature extraction. 

 

Figure 1 - Contrast Enhancement Example using Histogram Equalization [89] 
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As can be observed in the figure, the contrast of the image on the right has been enhanced. As 

stated by Patel et al. (2013), histogram equalization is not the most effective method for contrast 

enhancement, however, the benefit of using similar low-level techniques is readily apparent. 

The techniques used to process images can be classified into 3 main categories: low-level, mid-

level, and high-level. Low-level processes (LLPs) and Mid-level processes (MLPs) both accept an 

image as input; however, the output for LLPs is an image, and the output for MLPs is a set of 

attributes. High-level processes (HLPs), on the other hand, take a set of attributes and output 

understanding [8]. 

 

2.1.1 Low-Level Processes 

 

The purpose of this level of process is to carry out two main divisions of tasks: Image 

Enhancement, and Image Restoration [9]. Enhancements include operations such as contrast or 

brightness adjustment, or other techniques focused on highlighting image details, which produce 

subjective results. Image restoration, on the other hand, outputs an objectively measurable 

result, as the issue of image degradation can be addressed using a mathematical or probability-

based model [10].  

 

2.1.2 Mid-Level Processes 

 

According to Sood, these processes are responsible for Object Recognition and Segmentation; 

however, this is contradicted by Azimi, who believes these tasks should be categorized as high-

level processes. Instead, the tasks belonging to this class are Transforms and Compression [9]. 



 

  

 

8 

 

2.1.3 High-Level Processes 

 

These processes are most associated with computer vision (CV), and as such – in accord with 

Azimi – the tasks at this level are Segmentation, Feature Extraction, and Classification or 

Recognition, which will be further discussed later in sections 2.3 and 2.4. 

 

2.2 Data Pre-processing 

Pre-processing of images for DL applications is necessary to successfully train a network because 

the characteristics of the defect and non-defect regions are not easily discernible. Due to the 

presence of noise in unprocessed images, they do not ensure the successful training of a DL model 

[11]. This is supported by Ranganathan (2021), who suggests that although DL systems are 

capable of being trained using noisy data, it may have an impact on the applications’ accuracy 

[12]. 

 

Several data pre-processing techniques are commonly used in machine learning CV projects: 

including but not limited to grayscale conversion, normalisation, data augmentation, and image 

standardization. They are used to achieve a higher accuracy whilst also reducing a model’s 

complexity [13]. 
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The figure above demonstrates the range of learning techniques, pre-processing techniques, and 

their respective accuracies. The table illustrates the applicability of pre-processing techniques and 

how they can be utilised in both image and standard data DL problems. 

 

2.3 Feature Extraction Methods 

The goal of feature extraction, a crucial stage in the development of any pattern classification, is 

to obtain the pertinent data that defines each class and is performed after the data has been pre-

processed through techniques previously discussed. This procedure creates feature vectors by 

extracting appropriate features from detected objects; this feature vector represents the identity 

of a class of objects [14]. Image features can be divided into local features and global features. 

They can be defined accordingly [15]: 

• “Local features: Features calculated over the results of subdivision of the image band on 

image segmentation or edge detection.” 

Figure 2 - Section of  a Table Showing DL based Applications with Pre-processing Techniques [12] 
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•  “Global features: Features calculated over the entire image or just regular sub-area of an 

image.”  

 

According to Kumar & Bhatia (2008), a good feature set includes discriminating data that can 

separate one object from others. To avoid producing various feature codes for objects belonging 

to the same class, it must be as stable as possible. The features chosen should be a limited subset 

whose values effectively distinguish between patterns of various classes while being comparable 

for patterns belonging to the same class. 

There are many feature extraction methods, which must be chosen based on several factors: 

computational complexity, implementation difficulty, adaptability to translated objects and 

shapes, etc. [16]. However, these feature extraction methods are only relevant whilst considering 

traditional analysis. Deep learning is now widely used for image and video analysis, and it has 

received recognition for being able to analyse raw image data without first extracting any features 

from it [17]. In this regard, DL solutions provide a large advantage over traditional computer vision 

systems, in that there is greater accuracy of classification, segmentation, object detection, and 

Figure 3 - Feature Extraction Demonstration [91] 
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Simultaneous Localization and Mapping (SLAM). Kernels, often referred to as filters, are used by 

CNNs to identify features, such as edges, throughout a picture [18]. 

The figure below shows an overview of the difference in workflow comparing traditional CV to 

deep learning CV. 

 

 

 

2.4 Surface Defect Detection Methods 

The main goal of surface defect detection – also referred to as automated visual inspection (AVI) 

– is to use classification techniques to group defects into specified classes [19]. There are two 

categories of methods that are going to be compared: traditional approaches, and deep learning 

approaches. The benefits and drawbacks of both will be compared, in addition to their sub-

categories. 

 

Figure 4 - Traditional (a) vs. Deep Learning (b) Computer Vision Workflow [18] 
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2.4.1 Traditional Methods 

 

According to Kumar & Bhatia (2008), feature extraction and decision-making techniques should 

be divided into three groups: statistical, spectral, and model-based. This has more recently been 

accepted, but modified; Sun et al. (2018), believe the techniques should be divided into statistical 

methods, filter-based methods, model-based methods, and learning-based methods. 

 

Statistical Methods 

 

The statistical approach involves developing a mathematical model by applying mathematical 

statistics and probability theory [20]. Histogram properties, co-occurrence matrices, 

mathematical morphology, and local binary patterns are common statistical techniques (LBP) 

[21]. These methods have a low computational cost and can be highly accurate, however, the 

accuracy over a wide range of scenarios can be detrimentally affected by a variety of factors such 

as grey value, noise, and irregularities in texture [20]. 

 

Filter-based (Spectral) Methods 

 

To extract features, these methods mathematically transfer data from the spatial domain to the 

frequency domain [21]. The filter-based methods considered by Sun et al. (2018) include spatial 

domain, frequency analysis, Gabor transform, wavelet transform, and multiscale geometric 

analysis. Modern high-dimensional datasets require the development of faster algorithms, and as 

a result, spectral approaches have grown in popularity [22]. 
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Model-based Methods 

 

Ren et al. [21] state that “model-based approaches construct representations of images by 

modeling multiple properties of defects”. The Markov random field (MRF) and the auto-regressive 

model are the most often used model-based techniques. For modern purposes, auto-progressive 

models are becoming more favoured due to a lower computational cost compared to non-linear 

models [21]. 

 

Learning-based Methods 

 

Derived from statistical pattern recognition theories, linear support vector machine (SVM) 

algorithms have been in use for over two decades. Compared to Naïve Bayes and neural networks, 

the SVM classification approach is thought to be a better option for noisy datasets when 

considering accuracy and computational complexity [23]. 

 

2.4.2 Deep Learning-based Methods 

 

Deep learning approaches have rapidly become the standard for AVI, which can be attributed to 

the efficiency of its feature extraction capabilities. There are a variety of DL methods that are in 

use for a range of tasks, however, all the most used rely on CNNs [24]. According to Yang et al. 

(2019), currently, the most widely used object identification techniques are the Faster R-CNN, 

You Only Look Once (YOLO), and Single Shot Detector (SSD) – which are all CNN-based. R-CNN is 

a specific type of CNN that is specialised for object detection in images, as opposed to general 

image classification [25]; hence it is suitable for defect detection, as defects can be classified as 

objects. 
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The figure below outlines the overall structure of a very basic CNN. The main features of a CNN 

are convolutional layers, pooling layers, fully connected layers, dropout layers, and activation 

functions [26]. 

 

2.5 Surface Defect Detection Applications 

Overall, the employment of an AVI system reduces the loss of revenue compared to manual 

inspection not only by reducing the frequency of product returns or waste, but because improving 

product quality can lead to more sales and revenue, customer confidence and trust, repeat 

business, and even improved brand reputation [27].  

 

According to Ravikumar et al. (2011), machine vision is mostly used for visual inspection of 

component surfaces. However, the applications of this technology cover a wide range of domains 

Figure 5 - Basic CNN Network Architecture [92] 
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and industries. AVI systems have a wide range of usage; in the medical field to detect defects in 

cardiovascular stents, in food processing to grade lentils, and the manufacturing of glass and 

plastics, among others [28]. 

 

2.6 Existing Deep Learning Models 

2.6.1 VGG16 vs Resnet50 [29] 

 

In a study exploring the application of convolutional neural networks (CNNs) for classifying affect 

states, specifically facial expressions, the performance of two transfer learning models, VGG16 

and ResNet50, were compared. The experimental results demonstrated validation accuracies of 

96.8% for VGG16 and an impressive 99.47% for ResNet50 [29]. These findings showcase the 

superior performance of ResNet50 in accurately identifying and classifying facial expressions, 

indicating its potential as a powerful tool in affect state recognition tasks.  

The study also included the calculation of precision and recall as additional performance 

measures. The corresponding results for precision and recall can be observed in the subsequent 

figures, providing a comprehensive evaluation of the models' performance in terms of these 

metrics. These results offer valuable insights into the precision (ability to avoid false positives) 

and recall (ability to capture all relevant positives) of the models, further enhancing the 

understanding of their classification capabilities. 
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The results presented in the tables demonstrate the overall effectiveness of both models in 

accurately identifying images from each class. However, a comparison between the two models 

reveals that VGG16 had a slightly lower performance compared to ResNet50, particularly in terms 

of false positives. 

 

Figure 7 - VGG16 vs ResNet50 Precision Table [29] 

Figure 6 - VGG16 vs ResNet50 Recall Table [29] 
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In terms of precision, VGG16 demonstrated a higher rate of false positives, particularly for the 

'disgust' and 'happy' classes, with precision scores of 0.88 and 0.96, respectively. This indicates 

that VGG16 tended to incorrectly classify negative instances as positive for these specific classes. 

In contrast, ResNet50 achieved better precision, suggesting a lower rate of false positives for 

these classes. 

 

Regarding recall, the two models exhibited relatively similar performance, with average recall 

values of approximately 0.96 for VGG16 and 0.98 for ResNet50. However, it's worth noting that 

VGG16's recall value for the 'sad' class, scoring 0.88, stands as somewhat of an outlier. This 

suggests that a lower proportion of 'sad' images were correctly identified by VGG16 compared to 

other classes. 

Considering both precision and recall provides a more comprehensive assessment of the models' 

performance. While VGG16 struggled with false positives, particularly for 'disgust' and 'happy', it 

still achieved a relatively high average recall. On the other hand, ResNet50 exhibited better 

precision and consistent recall rates. These observations shed light on the models' strengths and 

weaknesses in accurately classifying the different image classes.  

 

A possible explanation for some classes yielding lower rates is an imbalance in image class 

distribution, as can be seen in the following figure, which contains the number of images 

belonging to each class. 
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2.6.2 VGG16 vs InceptionV3 vs ResNet50 [30] 

 

A study compares the performance of various models, including InceptionV3, VGG16, and 

ResNet50 in the classification of COVID-19 and pneumonia [30]. The dataset used for the study 

consisted of 1536 chest X-ray images depicting COVID-19 cases and 5629 images displaying 

pneumonia cases. However, it's worth noting that the dataset was unbalanced, with a larger 

number of pneumonia images. To address this issue, under-sampling techniques were employed 

to balance the dataset, ensuring fair comparison among the different classes. The results of the 

study are shown in the figure below and are discussed on the next page. 

 

Figure 8 - Expression Dataset Distribution [29] 

Figure 9 - COVID-19 and Pneumonia Model Performance [30] 
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In terms of overall performance, VGG-16 emerged as the top-performing model among the three 

evaluated models, achieving a remarkable validation accuracy of 100%. In a separate study 

conducted by Shazia et al. (2021), focusing on the classification of COVID-19, pneumonia, and 

normal images, VGG16 exhibited the highest overall accuracy, reaching an impressive 95.88%. On 

the other hand, InceptionV3 and ResNet50 achieved slightly lower validation accuracies of 99.63% 

and 99.82%, respectively. 

Interestingly, all three models demonstrated excellent performance even with a relatively low 

number of epochs. InceptionV3 and ResNet50 achieved optimal accuracy in just 3 and 4 epochs, 

respectively, while VGG-16 required the most epochs, specifically 21, to achieve optimal results. 

Despite the variation in the number of epochs required, each model demonstrated their 

effectiveness in accurately classifying the images. 

 

 

These findings highlight the superior performance of VGG-16 in the given classification task and 

emphasize the efficiency of InceptionV3 and ResNet50 in achieving optimal accuracy with fewer 

epochs. 
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2.7 Gap Analysis 

As stated by Zheng et al. [21], “manual surface inspection methods performed by quality 

inspectors have the disadvantages of low efficiency, high labor intensity, low accuracy, low real-

time performance, etc.” Manual visual inspection methods necessitate a significant amount of 

time and are very subjective. AVI approaches are intended to supplement or completely replace 

human judgement to overcome the limitations of human inspection [31], however, this is yet to 

be improved; according to Damacharla (2021), due to the training requirements and inaccuracies 

associated with AVI systems, most steel production sectors continue to use manual visual 

inspection. 

To remedy this situation, an AVI system with the following features must be developed: rapid 

detection speed, sufficiently high accuracy, a high level of abstraction to reduce the cost of 

employee training, and an ANN which can be precisely trained with a minimal dataset. 
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3. Technical Review 
 

The purpose of this technical review is to evaluate and select relevant technologies required for 

different steps in the development of the DL model and web application. This review has been 

divided into three main sections: Data Acquisition Tools, Data Analytics Tools & Platforms, and 

Frontend. However, Data Analytics Tools & Platforms has been further partitioned into Open 

Source and Commercial options. Using a set of criteria derived from research into relevant 

technologies, the suitability of each will be contrasted and compared. 

 

3.1 Data Acquisition Tools 

The process of measuring aspects of the physical environment, such as pressure, temperature, 

sound, and electricity, is known as data acquisition [32]. This is accomplished by using a variety of 

sensors that capture analogue signals from the environment and convert them to digital signals 

[32]. In the context of machine learning, data acquisition tools relate to sensing hardware and 

systems used to acquire data to form a dataset, such as a camera. However, due to the scope of 

this project, it is infeasible to use manual data acquisition methods; it instead utilizes a dataset 

found on Kaggle, an open dataset repository. Despite this, the components of a data acquisition 

system are discussed in this section, as they are relevant to the research. 
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3.1.1 Hardware Components 

 

Analogue-to-Digital Converter 

 

An analogue-to-digital converter (ADC) is a device that transforms analogue signals into digital 

signals, such as sound captured by a microphone or light entering a digital camera [33]. This 

component is vital in allowing digital systems to communicate with real-time analogue signals. An 

ADC provides a data acquisition system with the ability to collect information from the real world, 

which is usually in the form of a voltage, which is then converted to a binary number [34]. 

Sensors 

 

Sensors are another important aspect of a data acquisition system. Their role is to convert 

physical properties such as temperature, pressure, humidity, and light intensity into analogue or 

digital electrical signals [35]. They are a subset of transducers, which are broadly defined devices 

that convert energy from one form to another [36]. 

3.1.2 Software Components 

 

WINDAQ 

 

WINDAQ is software used for real-time data acquisition, signal processing, and data analysis. It 

provides a platform for acquiring and analysing data from a variety of sources, such as USB and 

PCI devices which may utilise sensors and analogue-to-digital converters [37]. 

ActiveX 

 

Microsoft's ActiveX framework enables programmers to construct reusable software 

components. Numerous applications, including data-acquisition systems, can use these 

components [38]. 
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3.2 Data Analytics Tools & Platforms (Backend) 

This section of the technical review covers all the technologies required to develop & train the 

model, as well as to develop other elements of the backend such as performance measurement. 

 

3.2.1 Open Source 

 

Python vs R (Programming Language) 

 

R is a programming language specifically purposed for statistical computation and graphics [39], 

whereas Python is a general-purpose high-level programming language with large extendibility in 

the form of modules. Python is more versatile and consistent than R due to its broad community 

support, accessible documentation, and code standardisation. Additionally, since Python is a 

general-purpose language; it can seamlessly integrate with other development tasks, notably for 

this project the creation of a web application utilizing one of its robust third-party frameworks. R, 

on the other hand, despite being a difficult language to learn, offers more models for statistical 

analysis [40]. 

 

OpenCV 

 

OpenCV is a computer vision library compatible with several programming languages, such as 

C++, Python, and MATLAB [41]. In Python, OpenCV is a module capable of image processing and 

facilitating CV tasks. In the context of the project, it provides the ability to perform data pre-

processing and annotate images for use in the frontend. 
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TensorFlow vs PyTorch 

 

Both TensorFlow and PyTorch are deep learning frameworks that can utilise a discrete GPU to 

perform tasks [42]. Due to their ability to use parallel processing, GPUs are more suited to 

complex tasks such as the training of a deep-learning network. For this project, training will take 

place on a computer equipped with an NVIDIA RTX 3070, which will significantly reduce training 

time when combined with a GPU-accelerated framework. 

TensorFlow, developed by Google, is a much more mature framework than PyTorch, with superior 

debugging and visualisation capabilities. PyTorch, on the other hand, takes a more 'pythonic' 

approach, making it easier for Python developers to use [42]. However, TensorFlow includes a 

package called Keras, which is a high-level API for deep learning. It can be used to write more 

concise, readable code while retaining the TensorFlow GPU back-end's power. 

NumPy vs Pandas 

 

Through the virtue of locality of reference, NumPy provides a Python array implementation that 

is 50 times faster than native Python lists. It also provides a set of mathematical functions for 

image pre-processing, such as the Fourier transform [43]. TensorFlow includes NumPy as an API, 

meaning NumPy structures can be easily integrated into a TensorFlow environment without 

adding complexity [44]. 

Pandas has a broader set of capabilities than NumPy, but it is more focused on delivering insights 

into big data problems than image data. However, Pandas includes a 'DataFrame' structure, which 

is a 2D array implementation that could be used in storing image data. However, a NumPy array 

outperforms Pandas DataFrames when working with lesser than five-hundred-thousand rows 

[45]. Furthermore, because Pandas lacks TensorFlow integration, NumPy is the superior choice. 
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3.2.2 Commercial 

 

MATLAB 

 

MATLAB is a high-level programming platform and language designed for engineers and scientists 

[46]. It has many features and can complete most of the essential tasks; nevertheless, it is 

unsuitable for this project due to its steep learning curve, and for the sake of integration 

simplicity, it is a better choice to use only one programming language for development. 

LabelBox 

 

LabelBox is a data training platform most typically used for annotating or labelling data [47], which 

can then be exported and utilised to train a TensorFlow (or other ML) model more quickly. 

 

In conclusion, the primary back-end technologies used were Python, OpenCV, TensorFlow, Keras, 

and NumPy. It was also planned to use LabelBox; however, after evaluation, it was deemed 

infeasible to manually annotate a sufficient-sized subset of a dataset. 

 

 

3.3 Front-end Dashboard and Visualization Platforms 

As a proof-of-concept, an interface in the form of a barebones web application will be developed. 

Due to the impracticality of acquiring samples of defective SPI castings, the front-end will be 

demonstrated using images from the dataset. Since Python is the most suitable language for the 

project, only Python frameworks and libraries will be considered in this section. 
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3.3.1 Flask 

 

Flask is a microframework for developing web applications and APIs. It requires little boilerplate 

code, resulting in a codebase that is very concise and readable, allowing for rapid development. 

Flask, like Python, has a multitude of third-party libraries for a wide range of tasks, as well as 

robust community support. It is also extremely fast and comes with a development server, which 

eliminates the need for a separate web server. 

 

3.3.2 FastAPI 

 

FastAPI is a Python web framework with excellent documentation and features. However, unlike 

Flask, it lacks an integrated development server, necessitating additional steps to begin 

programming. Furthermore, its design is focused on producing APIs rather than web apps [48]. 

 

3.3.3 Django 

 

Django is a full-stack framework suited to building complex web applications and is widely 

adopted in commercial applications. It allows for rapid, organized development; however, it is 

excessive for this project. 
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3.4 Comparison of Front-end Technologies 

The front-end technologies were evaluated based on six criteria: user adoption, community 

support, project suitability, the inclusion of a development web server, the speed of 

development, and prior knowledge of the framework. Additionally, these criteria were weighed 

by determining whether it was deemed required or optional. 

Flask and Django had the highest adoption rate, with FastAPI having fewer online resources 

referencing it, likely because it is a newer framework. In terms of community support, Flask had 

the highest number of online resources and forum responses compared to the other two 

frameworks. However, it was found that Flask and FastAPI were more suitable for the required 

task as they are minimal frameworks, as opposed to Django’s bundled and complex nature. Based 

on these three required criteria, Flask scored the highest, as can be seen in the table below.  

 

Table 1 - Front-end Framework Comparison 

Importance Description Flask Django FastAPI 

Required Adoption Highest Highest Lower 

Required Community Support High Medium Low 

Required Project Suitability Highest Medium High 

Preferred In-built Web Server Yes Yes No 

Preferred Development Speed High High High 

Preferred Prior Knowledge Highest Medium Medium 

 

 

In conclusion, Flask was chosen as the front-end framework. 
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4. Research Methodology 
4.1 Overview 

4.1.1 Research 

 

Research for this project primarily utilised an experimental design, however, some analytic 

methods were also used. In addition to the experimental output, pre-conducted comparisons of 

ML models have been analysed (in the Literature Review) to provide further insight and to guide 

the development of the model. 

The goal of the research was to create a model which is sufficiently accurate whilst providing an 

adequate level of efficiency, with relevant performance measures and visualisations used to 

evaluate and improve. 

 

Dataset 

 

The dataset used for model training, development, and comparison was obtained externally from 

Kaggle [49]. This dataset played a crucial role in conducting the research and gathering the 

research output. It consists of 1300 images, each with a resolution of 512x512 pixels, representing 

the front surface of submersible pump impellers. Out of the total images, 781 of them are labelled 

as 'defective', indicating that these impellers have some kind of damage or flaw. The remaining 

519 images are labelled as 'ok', implying that these impellers are in good condition without any 

noticeable defects. The dataset encompasses a diverse range of defects that can occur in SPIs. 

These defects can include various types of damages or abnormalities that affect the impeller's 

functionality or performance. Examples of such defects may include cracks, erosion, corrosion, 
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wear, imbalance, or any other anomalies that could potentially impair the impeller's efficiency, 

as can be ascertained from the figure below. 

 

 

 

Figure 10 - Dataset Sample 
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Pre-processing 

 

Two pre-processing techniques were employed in the analysis. The first technique involved 

rescaling the pixel values of the images to normalize them within a range of 0 to 1. This process 

of rescaling ensured that all pixel values fell within a standardized and consistent range, 

facilitating subsequent computations. 

The second pre-processing technique focused on resizing the images. By downsizing the images 

to a smaller resolution, computational efficiency was improved. This resizing step reduced the 

dimensions of the images while retaining important features and patterns, enabling faster 

processing during model training and inference. 

 

4.1.2 Development 

 

The creation of this deep learning model necessitated the use of an agile development 

methodology; the pre-processing, prediction, comparison, and front-end modules also benefitted 

from the use of such methodology. The reason for this is that modelling such an architecture can 

require many iterations with constantly changing specifications to fine-tune the model's 

parameters to an acceptable level of efficiency, speed, and accuracy. Additionally, refining the 

other modules required modifications based on changes to the structure of the model. 

The project management methodology used was based on Kanban because the workflow 

structure is much more flexible than Scrum, allowing for more easily permitted changes to the 

development process. However, because there was only one developer on the project, Kanban 

was only used loosely, as the methodology is designed for larger projects and teams; Kanban 

features were used as required. 
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Jira was the project management tool used to plan and track the project's progress. It has features 

like a Kanban board, issue linking to source control, and a 'roadmap,' which is similar to a Gantt 

chart but designed for agile methodologies [50]. GitHub was additionally used for code versioning. 

Action Plan 

 

The action plan for this project was divided into six agile epics, as observable in the figure above: 

• Setting up the development environment 

• Designing the model 

• Designing the web application 

• Implementing, training, and testing the model 

• Implementing the web application and testing 

• Writing the report 

The roadmap includes a timeframe for each epic based on reasonable estimation after task 

analysis. It should be noted that the implementation of the backend was allotted the most time 

– two months. This is regarding the process being a series of rapid prototyping, testing, and 

redesigning iterations. The implementation of the frontend was only allotted two weeks because 

of familiarity with the front-end framework. The two design phases were only given two weeks 

Figure 11 - Jira Roadmap 
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to complete, as it was clear that a large portion of the design would take place during the 

implementation. 

Risk Assessment 

 

To ensure a comprehensive and successful project, a risk assessment was undertaken to help 

identify and avoid potential blockers. The results for which can be viewed in the table below. 

Table 2 - Risk Assessment 

Hazard Affected Group(s) Existing Controls Risk 

Development & report take 
more time than expected 

Author • Plan for the worst-
case scenario 

• Follow the roadmap 
as closely as possible 

• Use Jira effectively 

Low 

Project workload causing 
burnout and low productivity 

Author • Realistic goals and 
timeframes set 

• Follow Jira roadmap 

Low 

Speed and efficiency of 
model insufficient 

Author • Continuous cycles of 
iterative development 

Low 

Product strays from the 
scope of the project 

Author • Follow Jira roadmap 

• Intermittently refer to 
report scope and 
objectives sections 

Low 

Losing track of code history Author • Use git/GitHub 
version control 

• Refer to Jira issues 

Low 

The program doesn’t work as 
intended (bugs) 

Author • Frequent and 
thorough unit testing 

Low 

The computer or graphics 
card becomes damaged 

Author • Use a surge-protected 
extension cable 

• Keep liquids away 
from the 
computer/desk 

Low 

 

The subsequent sections (4.2 to 4.6) discuss the methodologies implemented for each aspect of 

the research. 
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4.2 Requirements 

The requirements are divided into model requirements and front-end application requirements. 

For each of these, the functional and non-functional requirements are listed in the respective 

subsequent tables, with justification provided for each. 

4.2.1 Model 

 
Table 3 - Model Requirements 

Requirement 

ID 

Requirement 

Type 

Description Justification 

M-FR1 Functional The model shall be able to 

classify surface defects of 

SPI castings in images. 

The primary goal of the 

deep learning model is to 

accurately identify and 

classify surface defects for 

quality control purposes. 

M-FR2 Functional The system shall support 

multiple classes of surface 

defects. 

Surface defects can vary in 

type and severity, so the 

model should be able to 

classify different defect 

categories. 

M-FR3 Functional The model shall accept 

input images in various 

formats (e.g., JPEG, PNG). 

The model should handle 

different image formats 

commonly encountered in 

real-world scenarios. 

M-FR4 Functional The model shall achieve a 

minimum classification 

accuracy of 90%. 

High accuracy is crucial to 

ensure reliable detection 

and minimize false positives 

or false negatives. 

M-NFR1 Non-functional The model shall process an 

image for defect 

classification within 1 

second. 

Real-time or near-real-time 

processing is necessary to 

enable efficient defect 

detection in production 

environments. 
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M-NFR2 Non-functional The model shall be able to 

handle variations in lighting 

conditions and camera 

angles. 

The model should be able to 

detect defects accurately, 

regardless of lighting 

variations or different 

capture angles. 

M-NFR3 Non-functional The model shall be capable 

of handling a large number 

of images for batch 

processing. 

The model should be 

capable of processing a 

significant number of 

images efficiently to support 

high-volume defect 

detection. 

M-NFR4 Non-functional The model shall provide 

insights into the decision-

making process. 

Understanding how the 

model arrives at its 

classifications is important 

for building trust and 

debugging potential issues. 

 

4.2.2 Front-end Application 

 
Table 4 - Front-end Requirements 

Requirement 

ID 

Requirement 

Type 

Description Justification 

F-FR1 Functional The front-end shall provide 

a user interface for 

uploading images for defect 

detection. 

Users should be able to 

easily upload images from 

their devices to initiate the 

defect detection process. 

F-FR2 Functional The front-end shall display 

the classification results for 

each uploaded image. 

Users need to see the 

detected surface defects 

and their corresponding 

classifications for further 

analysis and decision-

making. 

F-FR3 Functional The front-end shall support 

real-time streaming of 

Real-time streaming allows 

for continuous monitoring 
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images from a connected 

camera. 

and immediate detection of 

defects in production 

environments. 

F-FR4 Functional The front-end shall provide 

a visual representation of 

the detected defects 

overlaid on the original 

image. 

Visual overlays help users 

locate and understand the 

precise location and nature 

of the detected defects. 

F-FR5 Functional The front-end shall allow 

users to download or save 

the results of defect 

detection for further 

analysis. 

Users may want to save or 

export the results for 

reporting, documentation, 

or additional processing 

purposes. 

F-NFR1 Non-functional The front-end shall have a 

UI that is simple and easy to 

use. 

Users may simply access and 

interact with the application 

without difficulty or 

irritation because there is a 

user-friendly design. 

F-NFR2 Non-functional The front-end shall provide 

a smooth and responsive 

user experience. 

Even when executing 

difficult image analysis 

tasks, users want the 

programme to respond 

promptly and offer 

frictionless interactions. 

F-NFR3 Non-functional The front-end shall be 

suitable for widely used 

web browsers (such as 

Chrome, Firefox, and 

Safari). 

To maximise accessibility 

and user reach, the 

application should function 

flawlessly on a variety of 

browsers. 

F-NFR4 Non-functional The front-end shall adapt to 

various screen dimensions 

and resolutions. 

Regardless of the user's 

device or screen size, the 

application should offer a 

consistent an optimised 

experience. 
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4.3 ML Models 

The ML models selected for use in comparison were VGG-16, InceptionV3, and ResNet50. They 

were chosen based on their suitability, efficiency, and their inclusion in Keras as pre-trained 

models [51], allowing for a fair comparison. Their designs and characteristics are discussed below. 

 

4.3.1 VGG-16 

 

The CNN-based model composed of 16 convolution and fully connected layers performs strongly 

in image classification tasks. According to Rohini (2021), VGG-16 is still considered to be one of 

the best models for computer vision since its inception in 2014. It performs well in capturing fine-

grained details; however, it is computationally expensive due to its large number of parameters. 

Its architecture is outlined in the figure below. 

Figure 12 - VGG-16 Architecture [98] 
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4.3.2 InceptionV3 

 

The InceptionV3 model provides a balance of model size and computational efficiency, whilst 

retaining excellent performance in image classification and defect defection tasks. To yield this 

efficiency, its architecture utilizes Inception Modules, which were primarily designed as a solution 

to the issue of computational expense and overfitting; they rely upon the principle of using 

multiple filter sizes within the same layer [52]. The architecture for the model can be observed in 

the figure below. 

 

 

 

 

 

 

 

4.3.3 ResNet50 

 

Deep neural networks often encounter the difficulty of training past a certain number of 

iterations; this is because of the vanishing gradient problem. ResNet50 provides a solution for this 

problem through the introduction of skip connections, which provide shortcuts for an input to an 

activation layer [53], and make model training less computationally intensive. It also performs 

well in image classification and has been widely used for defect detection tasks. In one such defect 

Figure 13 - InceptionV3 Architecture [99] 
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detection task, hot-rolled steel strip defect detection using ResNet50 – along with other methods 

– achieved a 94.11% accuracy rate [54]. The model’s design can be derived from the figure below. 

 

 

 

 

 

4.4 Performance Metrics 

The metrics decided upon for analysis were accuracy, precision, recall, and F1-score. This decision 

was made based on the need for a comprehensive evaluation of the model's performance in a 

binary classification task. Each of these metrics provides unique insights into different aspects of 

the model's performance, allowing for a well-rounded assessment.  

All these metrics rely upon the involvement of true positive, true negative, false positive, and 

false negative rates, which are respectively the counts of correctly identified positives, correctly 

identified negatives, incorrectly identified negatives, and incorrectly identified positives. A 

commonly used method for summarizing these rates is a confusion matrix, which can be 

visualised in the figure below. 

Figure 14 - ResNet50 Architecture [100] 
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The matrix allows for a detailed analysis of model performance by providing insights into the types 

of errors it makes. The metrics mentioned above are derived from the rates defined in the 

confusion matrix. Their respective formulae along with a description of their use cases and 

relevance to this project are covered by sections 4.4.1 to 4.4.4. 

 

4.4.1 Accuracy 

 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
 

 

Accuracy is a commonly used metric that measures the overall correctness of predictions and 

provides a reasonably accurate indication of its performance; however, it can be misleading in 

imbalanced datasets where classes are unequally represented [55]. Nevertheless, there was no 

need to take this weakness into account, as the dataset utilized for this project was appropriately 

balanced; approximately 60% of the images depict 'defective' components, while the remaining 

40% represent 'ok' components. 

Figure 15 - Confusion Matrix [56] 
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4.4.2 Precision 

 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

 

Precision, on the other hand, measures the correctness of positive predictions by calculating the 

ratio of true positives to the total number of positive predictions. This metric can be particularly 

useful to detect when the number of false positives is high, acting as an indicator of the model’s 

ability to avoid false alarms. 

 

4.4.3 Recall 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

 

Recall, also known as sensitivity, measures the proportion of actual positive instances correctly 

identified by the model. It is used to assess the model’s ability to capture all positive instances 

and can be valuable when the cost of false negatives is high. 

 

4.4.4 F1-Score 

 

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 = 𝟐 (
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
) 

 

F1-score is a combined metric that builds upon its simpler components: precision and recall. It 

represents the harmonic mean of these two components and produces reliable results even when 

dealing with imbalanced data, in addition to giving extreme values a lesser weighting [56]. As it is 
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an average of the two metrics, an F1-score will be low when both are low, high when both are 

high, and medium when one is high, and one is low [57]. It provides a single value that summarizes 

the performance of the model, considering both aspects of class-wise accuracy. 

 

4.4.5 Summary of Metrics 

 

Using multiple metrics to measure and evaluate the performance of ML models is crucial. Each 

metric has its advantages and limitations, providing valuable insights into specific aspects of a 

model's strengths and weaknesses. For instance, the F1-score offers a balanced perspective of 

precision and recall, but it presents an aggregated measure that may lack intuitive 

interpretability; whilst accuracy, the simplest measure, provides a general overview of the 

performance, but offers less value when the dataset is unbalanced. 

 

4.4.6 Implementation 

 

This section explains the Python-based approach used to extract model performance metrics. To 

ensure organized code structuring, various tasks were separated into distinct scripts. In this case, 

the 'comparison.py' script was dedicated to comparing performance metrics. The primary 

objective of this task was to generate predictions using models trained on the validation dataset 

and assess their performance by comparing the predicted labels with the true labels of the 

images. This label comparison enabled the calculation of key metrics such as accuracy, precision, 

recall, and f1-score, which are essential for evaluating the model's effectiveness. These metrics, 

as mentioned above, provide valuable insights into the model's predictive capabilities. 
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To ensure fairness in the evaluation process, an additional step was taken to maintain consistency 

among the models; a dedicated function was implemented within the script to uniformly train 

each model. These trained models were then saved as '.h5' files in the local directory, enabling 

easy access for subsequent analysis and comparisons. The function responsible for training the 

models was appropriately named train_model(), as depicted in the figure below. This systematic 

approach helps to streamline the training process and promote transparency in the evaluation of 

the models. 

 

The provided figure illustrates the utilization of both training and validation datasets to evaluate 

accuracy throughout the training process (lines 117 to 118). To ensure that every image in the 

training dataset is covered within a single epoch, the steps per epoch were defined as the total 

number of samples in the training dataset divided by the batch size (line 119).  

 

Given that multiple models were required for comparison in this training scenario, the number of 

epochs was set to ten (line 120). This selection strikes a balance between training time and 

achieving satisfactory model accuracy, as will be demonstrated in section 5.1. Once the model 

training is complete, it is saved to the disk (line 121). 

Figure 16 - train_model() Function 
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To facilitate the compilation of models, a builder function was implemented (build_model() – as 

seen in the figure below), designed to accommodate two parameters: the name of the model and 

the desired shape of the transformed images. This builder function allows for flexible 

customization by enabling the specification of the model's name and the desired shape of the 

input images. By encapsulating these parameters within the builder function, the process of 

constructing models becomes more streamlined and adaptable to different requirements. 

To harness the benefits of transfer learning, the design employed a strategy of freezing all layers 

except the last five in the base model (lines 101 to 102) and adding an additional pooling layer 

and a dense layer. This approach allows the pre-trained weights and feature extraction 

Figure 17 - build_model() Function 



 

  

 

44 

 

capabilities of the base model to be leveraged while adapting it for binary classification. The 

added layers also enhance the model's ability to learn and generalize from the data. 

 

The final model design, before hyperparameter tuning, was established and built for training 

purposes using the build_custom_model() function in the figure below. Note that the 

hyperparameters for this model are the same as with the build_model() function. 

After training the models, they were loaded and then evaluated through the invocation of the 

following methods – load_trained_models() and evaluate_models(), respectively. 

 

 

Figure 18 - build_custom_model() Function 

Figure 19 - Model Evaluation Call 
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The evaluation process relied on the utilization of the evaluate_model() function, depicted in the 

figure above. It should be noted that the array of true image labels, denoted as y_true, and the 

array of model predictions, denoted as y_pred, served as the key inputs for this function.  

 

Following the prediction (line 170), ‘argmax()’ is called to one-hot encode the class labels (line 

171). The calculate_metrics() function was subsequently invoked (line 172), with the 

aforementioned arrays being passed as arguments. The calculate_metrics() function then 

calculates the accuracy, precision, recall, and f1-score using the TP, TN, FP, and FN rates derived 

using the function in the figure below. It then prints these performance metrics, along with the 

confusion matrix. 

 

 

 

 

  

Figure 20 - evaluate_model() Function 

Figure 21 - calculate_rates() Function 
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4.5 Hyperparameter Tuning 

In the context of machine learning models, internal parameters refer to the weightings of the 

neurons determined by training a neural network; hyperparameters, on the other hand, refer to 

the parameters which are pre-configured before the training process [58]. The selection and 

configuration of an ML model's hyperparameters have a significant impact on how well it 

performs, as they establish the model’s organisational structure [59]. Some common 

hyperparameters are [60]: 

• The number of layers in the model 

• The number of neurons in each layer 

• The activation function used in each layer 

• The optimizer used to minimize the loss function 

• The learning rate of the optimizer 

• The batch size used during training 

• The number of epochs used during training 

There are two main categories of approaches for hyperparameter tuning: manual search, which 

includes a person changing certain hyperparameters by hand; and automatic search, which uses 

functions to iteratively improve without the requirement for user input past setting the bounds. 

 

4.5.1 Manual Search 

 

The success of this method of tuning is highly reliant on the professional expertise of the user. It 

becomes easy for a person to misread trends and relationships due to high dimensionality. 

Additionally, the results of a manual tuning process may not be reproducible [61]. 
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4.5.2 Automatic Search 

 

Automatic search algorithms, such as grid search, random search, and Bayesian optimization are 

solutions to this problem. They reduce the need for in-depth knowledge of the process and 

instead implement an iterative method [61]. Each algorithm has its advantages and 

disadvantages, which are discussed below. 

 

Grid Search 

 

Grid search is the simplest automatic hyperparameter tuning method, which utilizes an 

exhaustive evaluation approach; therefore, all combinations will be compared, and the best 

performing will be identified. However, this comes at the cost of efficiency; this method is limited 

due to its computational expense, and the ‘curse’ of dimensionality [61]. As a result of its 

inefficiency, it is primarily useful when dealing with a small hyperparameter space. 

 

Random Search 

 

The random search algorithm improves upon grid search by instead running iterations with 

random values within the defined range, which saves on computation. Aside from its efficiency, 

this strategy can be especially effective when the hyperparameter space is large or there is little 

prior knowledge about the ideal hyperparameter values [62]. Although this technique may find 

the optimal hyperparameters faster than grid search, it may also be used exhaustively. 
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Bayesian Optimization 

 

In contrast, Bayesian optimization is a sequential model-based optimization technique that works 

by obtaining posterior information of function distribution using the Bayesian formula [63]. This 

information allows the algorithm to make informed decisions about the next hyperparameter 

distribution [63]. It is especially helpful when evaluating the objective function requires a lot of 

time or resources [64]. 

 

Evaluation of Techniques 

 

In summary, grid search is straightforward but computationally expensive, random search offers 

efficiency and is suitable for large hyperparameter spaces, while Bayesian optimization combines 

a probabilistic model with intelligent search decisions, making it particularly useful when the 

evaluation of the objective function is resource-intensive or time-consuming. The choice of 

method depends on the characteristics of the hyperparameter space and the available 

computational resources. 

 

Based on these factors, the selected hyperparameter tuning technique was Bayesian 

optimization, as it provides an efficient and effective manner of handling a large hyperparameter 

space. This is ideal because the optimal values are uncertain and require exploration. 
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4.5.3 Implementation 

 

Hyperparameter tuning was implemented similarly to performance metric evaluation and was 

cast into ‘hyperparameters.py’. Firstly, the dataset split was the same with 80% training and 20% 

validation. Secondly, it utilized a different model building function, also named build_model(), 

which can be viewed below. 

 

Line 34 shows the parameters for the function as the learning rate and dropout rate, allowing for 

simple modification of the hyperparameters. In addition to what was in the 

build_custom_model() function, there is also dropout which is implemented on lines 58 to 61. 

Figure 22 - hyperparameters.py build_model() Function 
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Next is the optimize_model() function which was responsible for returning the best validation 

accuracy for a full training cycle, as in the figure below. It builds the model (line 68), trains it and 

assigns its history to a variable (line 71) and finds and returns the ‘max’ validation accuracy from 

the history (lines 74 and 76). 

 

 

Finally, the hyperparameter space is defined in lines 81-84, specifying the bounds for each 

hyperparameter. These bounds are then passed to the Bayesian optimization object while 

defining the optimize_model() function in line 87. Additionally, the number of initial points and 

iterations for the optimization process is determined, and the optimizer is executed in line 88. 

Once the optimization is complete, the best-found parameters are stored and printed to the 

console in lines 90-97. This process can be observed in the subsequent figure. 

Figure 23 - hyperparameters.py optimize_model() Function 
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Figure 24 - hyperparameters.py Invokation 
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4.6 Sensitivity Analysis 

Sensitivity analysis is a method where the model input is altered in a controlled manner and the 

consequences of the changes are assessed. According to Salciccioli, et al. (2016), its purpose is 

to quantify how the uncertainty of model input is related to the uncertainty of outputs. Through 

uncertainty quantification, it enables researchers to evaluate how various input uncertainties 

propagate to the output uncertainty to determine the model's robustness and dependability [65]. 

The procedure is crucial because it may aid in error detection, model parameter calibration, and 

a deeper comprehension of the connection between the model's inputs and outputs [66]. 

 

4.6.1 Error Detection and Model Calibration 

 

Sensitivity analysis for error detection and model calibration works by identifying the parameters 

that are most susceptible to changes in input data and calculating the effect of these changes on 

the model's output [66]. By systematically varying the values of specific parameters or inputs, 

sensitivity analysis provides insights into the relationship between these inputs and the 

corresponding outputs. This helps in understanding the model's behaviour and identifying 

potential discrepancies or errors [67]. The parameters that have the most effects on the model's 

output are highlighted via sensitivity analysis, which also helps with model calibration. 

Researchers can prioritise their efforts in fine-tuning and calibrating these important parameters 

to enhance the performance of the model by focusing on them. The sensitivity analysis results 

are used to iteratively alter the parameter values, improving the accuracy and dependability of 

the model by ensuring that predictions match observed data [68]. 
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4.7 Activation Map 

In image localization, the goal is to identify and localize specific objects or regions of interest 

within an image. CNNs are powerful models that excel at capturing hierarchical representations 

of visual data. Activation maps play a crucial role in this process by highlighting the areas of the 

image that contribute most to the network's decision-making. According to Wharton, et al. 

(2021), this is primarily because CNNs can dissect a picture into smaller parts, extract multi-scale 

localised features, and then combine them to create extremely comprehensible representations 

for decision-making. An example of an activation map can be seen in the figure below. 

 

As can be observed, the activation map provides an expressive output of the model’s internal 

representations and highlights the most decisive sections of the image for class determination. 

An activation map has many purposes, such as providing interpretability and transparency for a 

model, visualization of its localization capabilities, comparison to other models, and exposure of 

errors for analysis, which provides the basis for more informed decisions in fine-tuning and 

refinement. This provides some remediation for a model’s black-box nature [69]. 

Figure 25 - Shoe Activation Map [101] 
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The activation map is generated by applying a technique such as Grad-CAM (Gradient-weighted 

Class Activation Mapping) or CAM (Class Activation Mapping), which allows for visualizing the 

areas of the image that are most relevant to the model's decision-making process. 

 

4.7.1 CAM 

 

CAM is an approach for producing feature maps from a DNN that is simple yet effective. It 

achieves this by extracting the weightings from the final convolutional layer of the model and 

performing a dot product between the reshaped activation maps and class weights [70]. 

 

4.7.2 Grad-CAM 

 

On the other hand, Grad-CAM considers gradients from throughout the network, providing more 

class discrimination and more fine-grained visual explanations [71]. However, due to the gradient-

averaging step, Grad-CAM may not always be reliable in that it can sometimes highlight sections 

that were not used [72]. 

 

Considering its simplicity of implementation and effectiveness, the decision was made to employ 

CAM as the preferred method for visualizing the activation map. Grad-CAM was not chosen 

because its gradient averaging tends to highlight unused sections of the image, reducing 

localization reliability. 
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4.8 Front-end Design 

In a production environment, such as an engineering facility, the web-based GUI would allow 

workers the ability to seamlessly monitor a live feed and swiftly scan components using a 

connected camera when the user presses a submit button. The system would then promptly 

generate a processed image of the component, which would display information such as its defect 

status, alongside localization and classification of defects. However, since physical access to SPIs 

was not available, and annotation of a sufficiently sized subset of the dataset was infeasible, 

certain design adjustments were made in the front-end. An overview of the proposed process can 

be ascertained from the figure below. 

 

Instead of relying on a live camera feed, the GUI was tailored to utilize a file selection button, 

granting users the ability to upload pre-existing images composed of the front surface of SPIs. 

Due to the lack of dataset annotation, classification of distinct types of defects (M-FR2) was 

Figure 26 - Frontend Application Flowchart 
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impossible, therefore the returned processed image would consist of a heatmap localization 

instead. Considering the proof-of-concept purpose of the system, it was determined that this 

approach would suffice. By opting for the file upload functionality, only minimal adjustments to 

the existing code would be necessary to transition to a solution aligned with the production 

design. 

 

For minimalism and functionality, a card design has been utilized for the GUI. As in the figure 

below, the contents of the card consist of an initial ‘upload image’ button. Depending on the 

inference of the model, after processing the card will display either 'Defective' or 'Not Defective' 

as the result, along with the model’s confidence in the prediction and a displayed image that can 

be either processed or unprocessed. 

  

Figure 27 - GUI Wireframe 
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4.8.1 Implementation 

 

The application is initialised using the app.run() function, as with any other Flask application. The 

user can then access the default endpoint (‘/’) which is defined in the figure below. 

 

 

 

This endpoint returns a ‘render template’ which can utilize Jinja templating to change the user’s 

view based on backend logic; however, this was not necessary since JQuery provides a more 

seamless experience. 

 

For styling, Bootstrap along with some custom CSS was utilized, and their inclusion in the render 

template (index.html) can be observed in the subsequent figure. 

 

 

 

 

The template’s body structure used the Bootstrap grid layout along with a custom ‘flexbox’ class 

(see figure below) to simplify the process of positioning and responsive resizing. 

 

 

 

Figure 29 - Bootstrap and Custom CSS Link Tags 

Figure 30 - Custom CSS Class 

Figure 28 - Implementation Default Endpoint 



 

  

 

58 

 

 

The grid layout can be observed in the usage of rows and columns (e.g., line 15 and 16). 

Additionally, components such as the image container div (line 17), the loading GIF (line 25), and 

h2 and h5 tags for the defective status and confidence, respectively (lines 31 to 32). It should also 

be noted that both png and jpeg images are permitted for uploading, as seen in the file select tag 

(line 35).  

JQuery was responsible for dynamically modifying the page and is triggered when the file in the 

file select tag changes. This can be observed in the figure below. 

Figure 31 - Implementation Template Body 

Figure 32 - JQuery 'on file change' Logic 
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There is then a check to ensure a file was successfully added to the script (line 51). If successful, 

an AJAX POST request (line 55) is sent to the ‘/process-image’ endpoint, which sends the raw 

image data after dynamically modifying the styling of the front-end (lines 61-66). On successful 

processing, the response is sanity-checked, and its data is used to update the HTML (line 67-82). 

If the backend encounters an error or there is a timeout, the site will display an error message 

(lines 84 to 87). 

Figure 33 - Implementation Template JQuery 
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The ‘/process-image’ endpoint begins with a check to verify a file has been uploaded, as in the 

figure below. 

 

 

 

 

 

Next, the file is saved to the ‘tmp’ folder (lines 37-39) with a UUID file name (line 36) to avoid 

collisions as in the figure below. 

After saving, a new thread is created (line 42) to run the ‘garbage_collection()’ function on the 

file to delete it after 15 seconds, preventing a build-up of images (see figure below). The 

‘is_defective()’ function is then called (line 44), which runs model inference on the input image 

and returns a boolean and the confidence values, as in the subsequent figure. 

 

 

 

 

Figure 34 - Implementation '/process-image' Check 

Figure 35 - Implementation '/process-image' File Saving and Processing 

Figure 36 - Implementation '/process-image' garbage_collection() Function 
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The ‘is_defective()’ function first loads the image using the path passed to it (from the ‘tmp’ 

folder), seen on line 23. Next, it resizes the image (line 24) to allow the uploading of different 

image sizes, converts it to an array using numpy (line 25), and normalizes the image (line 28). 

After that, the prediction is made on the image array (line 31), and the confidence is calculated 

(line 32). Finally, the prediction class is validated (line 35). If it is predicted as defective, the 

function returns True, along with the confidence value (line 36). Otherwise, it returns False, also 

accompanied by the confidence value (line 38). 

  

Figure 37 - localization.py 'is_defective()' Function 
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Going back to ‘/process-image’ in the figure below, the function then checks the result of the 

prediction (line 46). If defective, the activation map is created and saved to the ‘tmp’ folder using 

a modified version of the original image’s filename (line 47). Then, a garbage thread is created for 

that file (line 49), it is saved (line 53) and encoded for transfer (line 57), added to a new response 

along with the status and confidence, and sent (lines 59-63). If not defective, the image does not 

get processed further than the initial prediction, so the response consists of the status and 

confidence. 

 

 

 

 

  

Figure 38 - Implementation '/process-image' Response 
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Finally, as seen in the previous figure, the ‘save_activation_map()’ function is the implementation 

of class activation mapping (CAM) and can be seen in the subsequent figure. As with 

‘is_defective()’, the image is loaded, resized, and converted to an array (lines 47 to 49). A 

prediction is then performed using the intermediate layer – the final convolutional layer (line 51), 

the output is processed, and the activation map is resized to overlay the image (lines 52 to 59). A 

plot is then created using matplotlib (lines 61), the activation map is overlayed over the image 

(lines 62 to 63), and the file is saved to be sent in the response (line 69). 

 

The full code used in the implementation along with a screenshot of the project directory structure 

can be found in the Appendix.  

Figure 39 - localization.py 'save_activation_map()' Function 
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5. Results and Discussion 
5.1 Performance Analysis of ML Models 

This section provides a comprehensive experimental evaluation and comparison utilising relevant 

performance metrics. 

 

5.1.1 Experimental Comparison 

 

To ensure fair comparisons between models, the chosen approach for implementation involved 

utilizing transfer learning with the three architectures: VGG16, InceptionV3, and ResNet50. This 

approach entailed utilizing the pre-trained models with weights from the ImageNet dataset. To 

achieve this, the top classification layer was removed, and the weights of the base model were 

frozen, excluding the last five layers. Additionally, to define the outputs for binary classification, 

an extra pooling layer and a dense layer were added. By adopting this methodology, a consistent 

and standardized framework was established for evaluating the performance of the models, as 

discussed previously. 

 

Dataset Split 

 

As mentioned earlier, the dataset consists of 1300 images of SPIs. The training-validation split for 

each task was set at 80% and 20% respectively. This allocation was chosen because it strikes a 

balance between providing an ample amount of data for training and reserving a sufficient 

portion for validation. By allocating 80% of the dataset for training, the model can learn from a 

diverse range of examples, enabling it to capture the underlying patterns and intricacies of the 
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SPIs. The remaining 20% set aside for validation ensures that the model's performance can be 

assessed on unseen data, allowing for a reliable evaluation of its generalization capabilities. This 

split aims to prevent overfitting, where the model memorizes the training data without truly 

understanding the underlying concepts, and instead promotes the development of a robust and 

effective model that can effectively generalize to new SPIs. 

 

Input Image Dimensions 

 

It was initially attempted to use the original 512x512 images for training; however, the GPU used 

lacked sufficient memory to handle the training of the proposed model. Consequently, a decision 

was made to downscale the images to 224x224. This resizing was deemed necessary because it 

allowed the GPU to accommodate the training process of the proposed model within its memory 

limitations. 

By reducing the image dimensions from 512x512 to 224x224, the computational requirements 

were significantly reduced, enabling efficient training without compromising the overall quality 

of the dataset. This resolution is a commonly used standard in many computer vision tasks and 

has been shown to yield satisfactory results in various deep learning models [73]. Additionally, it 

aligns with the input size expectations of pre-trained models such as VGG [74], facilitating the 

utilization of pre-trained weights and transfer learning, which can greatly benefit the training 

process. The smaller image size not only allowed for successful model training but also 

contributed to faster computation during both the training and inference stages. 
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Results (224x224 Images) 

 

The results obtained for the 224x224 images are presented in the following figures, which will be 

subsequently compiled into a table and discussed. 

 

 

 

 

 

 

 

  

Figure 40 - Comparison Results Custom Model (224x224) 

Figure 41 - Comparison Results VGG16 (224x224) 

Figure 42 - Comparison Results InceptionV3 (224x224) 
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Table 5 - Comparison Results Table (224x224) 

Model Training 
Accuracy 

(3sf) 

Validation 
Accuracy 

(3sf) 

Precision Recall F1-Score TP TN FP FN 

Proposed 
Model 

99.5% 95.0% 0.888 1.000 0.941 103 143 13 0 

VGG16 99.9% 97.7% 0.945 1.000 0.972 103 150 6 0 

InceptionV3 93.3% 91.5% 0.879 0.913 0.895 94 143 13 9 

ResNet50 83.1% 82.6% 0.903 0.631 0.743 65 149 7 38 

 

Discussion 

 

According to the performance measures, VGG16 was the best-performing model, predicting non-

defective cases with exceptional accuracy. It had the highest validation accuracy (97.7%), 

precision (0.945), recall (1), and F1-Score (0.972). These data indicate its outstanding overall 

performance in correctly categorising non-defective samples. The Custom Model likewise 

performed well, with a high accuracy of 95% and faultless recall. With a validation accuracy of 

91.5%, precision of 0.879, recall of 0.913, and F1-Score of 0.895, InceptionV3 performed well. 

ResNet50, on the other hand, displayed lower accuracy and recall, with a validation accuracy of 

Figure 43 - Comparison Results ResNet50 (224x224) 
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82.6%, precision of 0.903, recall of 0.631, and F1-Score of 0.743. These measurements suggest 

that ResNet50 may have issues in recognising non-defective instances, perhaps leading to false 

positives. 

 

 

Results (128x128 Images) 

 

The results obtained for the 128x128 images are presented in the following figures, which will be 

subsequently compiled into a table and discussed. 

 

 

 

 

 

 

 

 

 

  

Figure 44 - Comparison Results Custom Model (128x128) 

Figure 45 - Comparison Results VGG16 (128x128) 
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Table 6 - Comparison Results Table (128x128) 

Model Training 
Accuracy 

(3sf) 

Validation 
Accuracy 

(3sf) 

Precision Recall F1-Score TP TN FP FN 

Proposed 
Model 

98.2% 97.7% 0.945 1 0.972 103 150 6 0 

VGG16 99.1% 98.5% 0.981 0.981 0.981 101 154 2 2 

InceptionV3 93.0% 93.1% 0.890 0.942 0.915 97 144 12 6 

ResNet50 89.9% 89.2% 0.826 0.922 0.872 95 136 20 8 

 

Figure 46 - Comparison Results InceptionV3 (128x128) 

Figure 47 - Comparison Results ResNet50 (128x128) 
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Discussion 

 

When the models were compared, VGG16 had the highest validation accuracy, suggesting greater 

overall performance. It also had the best precision and F1-score, signifying that it struck a fair 

balance between properly detecting positive samples and minimising false positives and false 

negatives. The custom model, on the other hand, had a somewhat greater recall, which means it 

accurately recognised all positive samples. InceptionV3 and ResNet50 demonstrated inferior 

validation accuracies, precision, recall, and F1-scores than VGG16 and the Custom Model. Based 

on these findings, VGG16 performed the best of the models, followed closely by the custom 

model. 

 

The overall validation accuracies increased when using 128x128 images, therefore these image 

dimensions were used for any further tasks. Also, because of its superior performance and ability 

to be trained on 512x512 images, a transfer-learning trained VGG16 model was used for back-

end processing in the web application. 

 

 

 

 

 

 

 

 



 

  

 

71 

 

Model File Sizes 

 

It should be noted that the custom model was considerably larger in file size than the other 

trained models, sitting at 408MB with 128x128 images compared to 86MB, 119MB, and 158MB 

for InceptionV3, ResNet50, and VGG16 respectively, as seen in the figure below. 

 

 

 

 

 

 

Additionally, only the file size of the proposed model notably increased, reaching 1.22GB, while 

the other models remained mostly unchanged. This can be attributed to most of their layers being 

frozen during transfer learning. 

 

 

 

 

 

 

  

Figure 49 - Model File Sizes with 224x224 Input 

Figure 48 - Model File Sizes with 128x128 Input 
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5.2 Hyperparameter Tuning Results 

Hyperparameter tuning was carried out using Bayesian optimization. The model was trained for 

50 epochs for each hyperparameter combination. In total, there were 13 cycles of optimization, 

with the first three finding the best initial point using random search, and the remainder relying 

upon Bayesian optimization. 

 

5.2.1 Selected Hyperparameters 

 

The hyperparameters used for tuning were the learning rate and dropout rate. Although various 

hyperparameters could have been additionally utilized, it was decided to focus on the most crucial 

for training [75] [76]. Consequently, the Adam optimizer was selected as the optimization 

method. 

 

Learning Rate 

 

The learning rate is responsible for determining the step size during optimization; a rate that is 

too low would result in a search that takes a long time and can get stuck, whereas a rate that is 

too high is prone to overshooting the minimum [77]. 

 

Dropout Rate 

 

Whilst the dropout rate controls what proportion of the data is randomly ‘dropped out’; this has 

the benefit of helping to improve the model’s overall generalization ability and prevent overfitting 

[78]. 
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Adam Optimizer 

 

Empirical findings show that Adam performs better in practice and performs favourably when 

compared to other stochastic optimisation techniques such as SGD, Adagrad, and Adadelta [79]. 

Due to its adaptive learning rates and moment estimates, it frequently converges more quickly 

than other optimizers, allowing it to move quickly toward the minimum for faster training [80]. 

 

Justification for Selected Hyperparameters 

 

It provided for an efficient and effective approach to enhancing model performance by focusing 

on the two hyperparameters that have the most influence on overall performance and 

generalisation ability. Because the dataset is well-balanced, it was suitable to rely on validation 

accuracy to provide an overview of performance in hyperparameter tuning. Taking this into 

consideration, the model’s performance is discussed using the performance metrics used in the 

prior section. 

 

5.2.2 Tuning Attempt 1 

 

The default learning rate for the Adam optimizer in Keras is 0.001, which serves as a benchmark 

for establishing an appropriate range. Thus, for the initial tuning attempt, a range of 0.001 to 0.01 

was selected. Similarly, as dropout with a rate of 50% (0.5) is often used as a starting point [81], 

the initial range for dropout was chosen as 0% to 50%. This broader range facilitates more 

effective operation of Bayesian optimization, as restricting the range might necessitate additional 

tuning to uncover optimal values. The table and figure below provide a visual representation of 

these chosen ranges for learning rate and dropout values. 
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Table 7 - Initial Hyperparameters 

Parameter Lower Bound Upper Bound 

Learning Rate 0.001 0.01 

Dropout Rate 0 0.5 

 

 

 

 

The tuning output is summarized in the subsequent figure, showcasing the best validation 

accuracy achieved. The highest validation accuracy recorded was an impressive 98.85%. This 

notable accuracy was attained with a dropout rate of approximately 36% and a learning rate of 

around 0.0011. The obtained validation accuracy is indeed promising, and the chosen dropout 

rate falls within the acceptable range for regularization purposes. However, it is worth noting that 

the learning rate is positioned quite close to the lower bound, indicating the potential for further 

improvement by exploring a lower minimum bound for the learning rate. 

Figure 50 - Hyperparameter Tuning Ranges (Attempt 1) 

Figure 51 - Hyperparameter Tuning Output (Attempt 1) 
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5.2.3 Tuning Attempt 2 

 

Based on the findings of the previous tuning attempt, it became apparent that lowering the 

learning rate could potentially lead to improvements. Therefore, for this subsequent attempt, the 

range for the learning rate was narrowed down to 0.0001 to 0.001. This revised range offers 

enough flexibility to explore different values while avoiding excessive breadth that could hinder 

the search for the optimal learning rate.  

 

 

 

 

 

 

On the other hand, the range for dropout was maintained the same as in the previous attempt (0 

to 0.5). This decision was based on the observation that the previous range did not appear to 

restrict improvements. By keeping the range unchanged, we allow for continued exploration of 

dropout values without imposing unnecessary constraints. A visual representation of these 

ranges for the learning rate and dropout values can be found in the previous figure. 

 

The result for this attempt yielded a higher validation accuracy of 99.23% at a dropout rate of 

36.8% and a learning rate of 0.0008575, as can be ascertained from the output in the figure and 

table below. The table compares the values between attempts. 

 

Figure 52 - Hyperparameter Tuning Ranges (Attempt 2) 
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Table 8 - Comparison between Tuning Attempts 1 and 2 

Attempt 

# 

Best 

Validation 

Accuracy 

(2dp) 

Best Learning 

Rate (3sf) 

Best Dropout 

Rate (3sf) 

Learning Rate 

Change Since 

Previous 

Attempt 

Dropout Rate 

Change Since 

Previous 

Attempt 

1 98.84% 0.001070 0.363 N/A N/A 

2 99.23% 0.000858 0.369 -0.000212 +0.006 

 

This table shows a lower learning rate and a higher dropout rate have a positive impact on 

accuracy. 

Figure 53 - Hyperparameter Tuning Output (Attempt 2) 
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5.2.4 Tuning Attempt 3 (Final) 

 

 

 

 

 

Building upon the notable improvement achieved in the previous attempt, it became evident that 

further gains in validation accuracy could be obtained through additional tuning. To focus the 

search and explore more promising regions of the hyperparameter space, the range for the 

learning rate was narrowed down to 0.0005 to 0.001, as can be seen in the figure above. 

Additionally, the range for dropout was adjusted to span from 20% to 50%. By restricting the 

range within this narrower interval, the tuning process can concentrate on dropout values that 

have shown potential for enhanced generalized performance. This constrained range enables a 

more focused exploration, aiming to uncover the most effective dropout rate for improving 

validation accuracy. 

 

In the latest tuning attempt, a higher validation accuracy of 100% was achieved. This accuracy 

was obtained with a dropout rate of 46.39% and a learning rate of approximately 0.0006245. The 

corresponding output can be observed in the figure below, confirming these optimal values. This 

is again accompanied by a table comparing the results between tuning attempts. 

Figure 54 - Hyperparameter Tuning Ranges (Attempt 3) 
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Table 9 - Comparison between Tuning Attempts 1, 2, and 3 

Attempt 

# 

Best 

Validation 

Accuracy 

(2dp) 

Best Learning 

Rate (3sf) 

Best Dropout 

Rate (3sf) 

Learning Rate 

Change Since 

Previous 

Attempt 

Dropout Rate 

Change Since 

Previous 

Attempt 

1 98.84% 0.001070 0.363 N/A N/A 

2 99.23% 0.000858 0.369 -0.000212 +0.006 

3 100.00% 0.000643 0.464 -0.000215 +0.095 

 

As with the previous comparison, this table shows that a lower learning rate and higher dropout 

rate benefitted the model’s classification ability. 

Figure 55 - Hyperparameter Tuning Output (Attempt 3) 
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Result Verification 

 

The model was retrained using these parameters for verification, and the retraining process 

yielded a validation accuracy of 98.85%. It is worth noting that previous epochs achieved even 

higher accuracies, reaching 99.23%, as shown in the figure below. 

 

 

 

The training metrics, which consist of training and validation accuracy, as well as training and 

validation loss, were visualized using the 'pyplot' module from the matplotlib library. Two graphs 

were generated to represent these metrics. Please refer to the figures on the following pages to 

view the graphs. The analysis of the results depicted in the graphs will be discussed subsequently. 

Figure 56 - Final Training Output 
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Figure 57 - Training and Validation Accuracy Plot 
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Figure 58 - Training and Validation Loss Plot 
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Graph Results Discussion 

 

The model demonstrated a promising initial accuracy of 60%, which experienced a rapid increase 

within the first 10 epochs, surpassing the 90% threshold. However, the subsequent improvement 

rate gradually slowed down. Compared to the models examined in the earlier comparison, it 

became apparent that the model in this study required a relatively larger number of epochs to 

achieve its optimal accuracy. Specifically, it took approximately 40 to 50 epochs for the model to 

reach its peak performance. 

 

The accuracy and loss graphs exhibit an inverse relationship, indicating that higher accuracy 

corresponds to lower loss. Although minor discrepancies exist, the overall trend suggests that as 

the model improves its performance, the loss decreases, resulting in higher accuracy. During the 

training process, there were two noticeable periods, epochs 10 to 20 and 30 to 50, where slight 

overfitting may have occurred. 

 

To address these observations, future improvements could focus on mitigating the observed 

overfitting during specific epochs. Implementing additional regularization techniques, such as 

weight decay, or adjusting the model architecture may help enhance the model's generalization 

capabilities [82]. Furthermore, exploring alternative optimization algorithms or refining 

hyperparameter tuning strategies could potentially optimize the model's performance and 

reduce the number of epochs required to achieve peak accuracy. 
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5.3 GUI and User Experience 

The frontend, as discussed earlier, is a proof-of-concept to demonstrate the technology’s 

applicability. As previously mentioned, the GUI used a card structure, as will be shown in the 

following figures. 

 

 

Figure 59 - Implementation Landing Page 

Figure 60 - Implementation GUI Loading GIF 
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The first figure above illustrates the landing page, featuring a card that includes a file selection 

button; this design allows users to upload files easily.  

The second figure showcases the page after an image has been uploaded, depicting a waiting 

state as the server processes the request. This is indicated by an animated loading icon, providing 

visual feedback to the user. 

 

In the event of a back-end error or request timeout, an error message is displayed, as shown in 

the figure below. This prompt alerts the user to the issue encountered during the processing of 

their request. 

 

 

 

 

 

 

Figure 61 - Implementation GUI Error Message 
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The figure below presents the output obtained when an image of a non-defective casting is 

uploaded. The confidence percentage accompanying the classification indicates the level of 

certainty expressed by the model in its classification decision. Given the high accuracy of the 

model utilized for this application – specifically, a transfer learning trained VGG16 model – the 

predictions are often made with 100% confidence. This indicates the model's strong level of 

certainty in its classifications. 

 

 

 

 

Figure 62 - Implementation GUI Result (Not Defective) 
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The activation map in the figure above highlights how techniques such as CAM can be used to 

localize defects and provide insights into model decision-making. It also illustrates the ability of 

activation maps to provide error-finding capabilities. In the figure, a minor inconsistency in the 

background towards the top right portion resulted in some erroneous weighting being assigned. 

This observation emphasizes the significance of incorporating variations and diverse samples 

within the dataset and its implications on the network’s decision-making. 

  

Figure 63 - Implementation GUI Result (Defective) 
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5.4 Discussion 

This discussion centres around the fulfilment of both functional and non-functional requirements 

that were successfully met (identifiable by the requirement ID in italics). Discussion regarding the 

unmet requirements can be found in Section 6.2, which specifically addresses the limitations 

encountered during the project. 

 

The application and model’s speed can be evaluated by measuring the time required for model 

inference. In the figure below, the first log line depicts a 20-millisecond interval, where the 

endpoint initiates a thread to make a prediction using the entire model, followed by a POST 

response. The subsequent three lines demonstrate inference times of 22 milliseconds, 18 

milliseconds, and another POST response. This demonstration confirms the fulfilment of 

requirements M-NFR1, M-NFR3, and F-NFR2; as fast model inference (M-NFR1) leads to batch 

processing capability (M-NFR3), resulting in a smooth and responsive user experience (F-NFR2). 

 

 

 

 

The initial POST involved analysing a non-defective image, requiring only one inference. In 

contrast, the subsequent POST involved a defective image that necessitated additional 

processing. The second image required two inferences to be made. Firstly, the application 

checked if the image was defective and received a positive result. Secondly, the activation 

Figure 64 - Implementation Performance Logs 
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mapping function extracted weightings from the final convolutional layer of the model, leading 

to a separate prediction. 

While the prediction performance of this model is indeed dependent on the server's graphics 

processing power, being a web application with server-side processing means that the client can 

seamlessly use a low-powered device without experiencing any significant decrease in speed, 

increasing its interoperability. Additionally, the application's modern frameworks ensure 

compatibility with a wide range of browsers (F-NFR3). The user interface, designed with cards, is 

intuitive and straightforward (F-NFR1) and it is responsive to different screen sizes (F-NFR4). 

After uploading an image through the file upload button (F-FR1), the system generates an output 

image that includes an activation map overlay (F-FR4) and displays the classification results (F-

FR2). This image can be downloaded by the user for further analysis (F-FR5). 

 

The proposed model can classify surface defects (M-FR1) to an accuracy of 99.23% (M-FR4), 

accepting any RGB image as input (M-FR3), and could provide insights into decision-making 

through feature activation map extraction (M-NFR4). 

 

 

 

 

In conclusion, all requirements were met other than M-FR2, M-NFR2, and F-FR3, which are 

discussed in Limitations (section 6.2). 
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6. Conclusion and Future Work 
6.1 Verification of the Study 

The study followed established best practices and guidelines in the field of deep learning and 

model evaluation. A sufficiently sized, high-quality, and balanced dataset was selected for training 

and validation. This dataset selection process aimed to provide representative samples and 

mitigate biases that could impact the model's performance.  

During the training process, the Adam optimizer, a widely recognized industry standard [82], was 

employed to optimize the model's parameters. The Adam optimizer is known for its effectiveness 

in yielding successful and reliable results [83]. Furthermore, the implementation of the dropout 

regularization technique was utilized to minimize overfitting, promoting better generalization of 

the model.  

To assess the models' performance, various evaluation metrics, including accuracy, precision, 

recall, and F-1 score, were employed. These metrics are widely adopted in machine learning tasks 

due to their ability to provide a comprehensive assessment of the model's classification ability 

[84]. Accuracy measures the overall correctness of predictions, while precision and recall focus 

on the model's ability to minimize false positives and false negatives, respectively. The F-1 score 

combines both precision and recall, offering a balanced evaluation of the model's performance. 

In conclusion, the experimental setup, along with evaluation metrics, statistical analyses, and 

comparative assessments with existing architectures contribute to the credibility and reliability 

of the study's findings, allowing for meaningful conclusions to be drawn and providing insights 

into the performance of the CNN architecture in comparison to other established models. 
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6.2 Limitations 

Throughout the project, a few limitations have been identified that warrant discussion. These 

limitations can be categorized into two groups: unmet requirements and additional limitations 

beyond the specified project requirements. 

 

6.2.1 Unmet Requirements 

 
Table 10 - Unmet Requirements 

Requirement 

ID 

Description Justification/Explanation 

M-FR2 The system shall support multiple 

classes of surface defects. 

Annotating the images accurately 

proved to be highly challenging due to 

the wide range of distinct casting defects 

and the lack of domain knowledge. The 

complexity and diversity of the defects 

made it impractical to annotate the 

images accurately. 

M-NFR2 The model shall be able to handle 

variations in lighting conditions and 

camera angles. 

The dataset consisted of photos taken 

from the same general angle in mostly 

uniform lighting conditions. There were 

no other similar datasets, therefore the 

model could not be trained as such. 

F-FR3 The frontend shall support real-

time streaming of images from a 

connected camera. 

As the frontend is a proof-of-concept 

system, it instead used manual file 

upload functionality. Switching to a 

camera would be relatively simple in 

implementation, however, the author 

did not have access to the SPIs. 
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6.2.2 Additional Limitations 

 

The main limitation encountered other than those already listed was limited GPU memory, which 

prevented training using higher dimension images such as 512x512. This was the initial reasoning 

for downscaling the images to lower dimensions for model comparison, however, it turned out 

that classification performance consequently marginally improved. Additionally, as 512x512 

training was not possible using the proposed model, it was decided to use a fine-tuned VGG16 

model instead for the frontend, to retain image quality for demonstration purposes. 

 

6.3 Future Work 

Although the project achieved overall success, there are still areas that warrant improvement and 

further development. Firstly, annotating the dataset to provide labelled bounding boxes and the 

ability to distinguish between different types of defects (M-FR2) would greatly enhance the 

system's effectiveness. By incorporating this additional information into the training process, the 

model can be trained to accurately identify and classify various defect categories, resulting in 

more comprehensive defect detection and data aggregation. 

Secondly, further efforts should be dedicated to redesigning and developing the model with the 

goal of achieving a smaller size and higher memory efficiency. This optimization would not only 

contribute to faster inference times and reduced computational requirements but also make the 

system more scalable and accessible for real-world deployment. By optimizing the model's 

efficiency, the system would be able to handle larger datasets and be deployed on resource-

constrained devices more effectively. 
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In addition to model improvements, the integration of live camera functionality into the front-

end application (F-FR3) would greatly enhance the system's usability and practicality. This feature 

would allow users to capture real-time images or videos for defect detection, providing 

immediate feedback and facilitating prompt decision-making through more seamless 

interactivity. 

Addressing these aspects would result in a more accurate, efficient, and user-friendly system, 

elevating its overall performance and impact. 

 

6.4 Conclusion 

The primary finding of this research underscores the effectiveness of a novel deep neural network 

in surface defect classification tasks. However, it also highlights that employing transfer learning 

techniques can yield equal or potentially superior results in terms of effectiveness and efficiency. 

This discovery emphasizes the significance of leveraging pre-trained models and existing 

knowledge in the field of deep learning to enhance the performance and productivity of defect 

classification systems. By leveraging transfer learning, researchers and practitioners can achieve 

robust and accurate defect detection while optimizing computational resources and reducing 

training time. This insight contributes to the broader understanding of the practical 

implementation and optimization of DNN models for surface defect classification, paving the way 

for more efficient and effective applications in industrial and quality control domains.  
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Project Directory Structure 
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requirements.txt 

 

absl-py==1.3.0 

asttokens==2.2.1 

astunparse==1.6.3 

async-timeout==4.0.2 

backcall==0.2.0 

bayesian-optimization==1.4.3 

cachelib==0.10.2 

cachetools==5.2.0 

certifi==2022.9.24 

charset-normalizer==2.1.1 

click==8.1.3 

colorama==0.4.6 

contourpy==1.0.7 

cycler==0.11.0 

decorator==5.1.1 

executing==1.2.0 

Flask==2.2.3 

Flask-Session==0.4.0 

flatbuffers==22.11.23 

fonttools==4.38.0 

gast==0.4.0 

google-auth==2.14.1 

google-auth-oauthlib==0.4.6 

google-pasta==0.2.0 

grpcio==1.51.1 

h5py==3.7.0 

idna==3.4 

importlib-metadata==6.0.0 

importlib-resources==5.12.0 

imutils==0.5.4 

ipython==8.11.0 

itsdangerous==2.1.2 

jedi==0.18.2 

Jinja2==3.1.2 

joblib==1.2.0 

keras==2.10.0 

Keras-Preprocessing==1.1.2 

kiwisolver==1.4.4 

libclang==14.0.6 

Markdown==3.4.1 

MarkupSafe==2.1.1 

matplotlib==3.7.0 

matplotlib-inline==0.1.6 
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numpy==1.23.5 

oauthlib==3.2.2 

opencv-python==4.6.0.66 

opt-einsum==3.3.0 

packaging==21.3 

pandas==1.5.3 

parso==0.8.3 

pickleshare==0.7.5 

Pillow==9.4.0 

prompt-toolkit==3.0.38 

protobuf==3.19.6 

pure-eval==0.2.2 

pyasn1==0.4.8 

pyasn1-modules==0.2.8 

Pygments==2.14.0 

pyparsing==3.0.9 

python-dateutil==2.8.2 

pytz==2022.7.1 

requests==2.28.1 

requests-oauthlib==1.3.1 

rsa==4.9 

scikit-learn==1.2.1 

scipy==1.10.1 

six==1.16.0 

stack-data==0.6.2 

tensorboard==2.10.1 

tensorboard-data-server==0.6.1 

tensorboard-plugin-wit==1.8.1 

tensorflow==2.10.1 

tensorflow-estimator==2.10.0 

tensorflow-io-gcs-filesystem==0.28.0 

termcolor==2.1.1 

threadpoolctl==3.1.0 

traitlets==5.9.0 

typing_extensions==4.4.0 

urllib3==1.26.13 

wcwidth==0.2.6 

Werkzeug==2.2.2 

wrapt==1.14.1 

zipp==3.14.0 
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Application Code 

app.py 

 

import os 

import threading 

import time 

import uuid 

from io import BytesIO 

import base64 

 

from flask import Flask, render_template, request, jsonify 

from localization import is_defective, save_activation_map 

from PIL import Image 

 

app = Flask(__name__) 

app.config.from_object(__name__) 

 

def garbage_collection(path: str, time_seconds: int): 

    time.sleep(time_seconds) 

    if os.path.exists(path): 

        os.remove(path) 

    exit(0) 

         

 

@app.route('/', methods=['GET']) 

def index(): 

    return render_template('index.html') 

 

@app.route('/process-image', methods=['POST']) 

def upload(): 

    if not request.files['raw_image']: 

        return 'No file uploaded' 

    else: 

        # Get the image from the request 

        image = request.files['raw_image'] 

         

        # Save the image to the tmp folder 

        file_name = str(uuid.uuid4().hex) 

        image_path = f"tmp/{file_name}.jpeg" 

        output_image_path = os.path.join('tmp', f'{file_name}-output.png') 

        image.save(image_path) 

         

        # Check if the image is defective + delete the image after 15 seconds 
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        threading.Thread(target=garbage_collection, args=(image_path, 15), 

daemon=True).start() 

         

        defective, confidence = is_defective(image_path) 

         

        if defective: 

            save_activation_map(image_path) 

            # Plot and save the output image to the tmp folder + delete the image 

after 60 seconds 

            threading.Thread(target=garbage_collection, args=(output_image_path, 

60), daemon=True).start() 

             

            with Image.open(output_image_path) as img: 

                image_data = BytesIO() 

                img.save(image_data, format='PNG') 

                image_data.seek(0) 

 

                # Encode the image data as base64 

                base64_image = base64.b64encode(image_data.getvalue()).decode() 

                 

            response = {'image': base64_image, 

                        'is_defective': defective, 

                        'confidence': confidence} 

 

            return jsonify(response) 

        else: 

            response = {'is_defective': defective, 

                        'confidence': confidence} 

             

            return jsonify(response) 
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localization.py 

 

import os 

 

import matplotlib 

import matplotlib.pyplot as plt 

import numpy as np 

import scipy as sp 

import tensorflow as tf 

from PIL import Image 

 

from train import train_model 

from tensorflow.keras.models import load_model 

 

matplotlib.use('Agg') 

 

if not os.path.exists('transfer-trained-vgg16.h5'): 

    print("Model not found!\nTraining model...") 

    model = train_model() 

print("Loading trained model...") 

model = load_model('transfer-trained-vgg16.h5') 

 

def is_defective(image_path): 

    with Image.open(image_path) as img: 

        img = img.resize((512, 512)) 

        image = np.array(img) 

     

    # Normalize the image 

    image = image / 255.0 

     

    # Make a prediction on the image using the model 

    pred = model.predict(image[np.newaxis,:,:,:]) 

    confidence_percentage = np.max(pred) * 100 

     

    # Check if the predicted class is 0 (defective) 

    if np.argmax(pred) == 0: 

        return True, confidence_percentage 

    else: 

        return False, confidence_percentage 

 

weights = model.layers[-1].get_weights()[0] 

class_weights = weights[:, 0] 
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intermediate = tf.keras.Model(model.input, 

model.get_layer("block5_conv3").output) 

 

def save_activation_map(image_path): 

    # Load the image file and convert it to a NumPy array 

    with Image.open(image_path) as img: 

        img = img.resize((512, 512)) 

        image = np.array(img) 

     

    conv_output = intermediate.predict(image[np.newaxis,:,:,:]) 

    conv_output = np.squeeze(conv_output) 

 

    h = int(image.shape[0]/conv_output.shape[0]) 

    w = int(image.shape[1]/conv_output.shape[1]) 

 

    activation_maps = sp.ndimage.zoom(conv_output, (h, w, 1), order=1) 

    out = np.dot(activation_maps.reshape((image.shape[0]*image.shape[1], 512)), 

class_weights).reshape( 

        image.shape[0],image.shape[1]) 

 

    fig, axs = plt.subplots(figsize=(6, 6)) 

    axs.imshow(image) 

    axs.imshow(out, cmap='jet', alpha=0.35) 

    axs.axis('off') 

    plt.tight_layout() 

 

    # Save the figure to the tmp folder 

    file_name = os.path.splitext(os.path.basename(image_path))[0] 

    fig.savefig(os.path.join('tmp', f'{file_name}-output.png')) 

    plt.close(fig) 
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train.py 

 

import os 

import random 

 

import numpy as np 

import tensorflow as tf 

from tensorflow.keras.applications import VGG16 

from tensorflow.keras.optimizers import Adam 

from tensorflow.keras.preprocessing.image import ImageDataGenerator 

 

def set_seed(seed): 

    tf.random.set_seed(seed) 

    os.environ['PYTHONHASHSEED'] = str(seed) 

    np.random.seed(seed) 

    random.seed(seed) 

     

 

def get_model(SHAPE: tuple): 

    set_seed(33) 

     

    vgg = VGG16(weights='imagenet', include_top=False, input_shape = SHAPE) 

 

    for layer in vgg.layers[:-8]: 

        layer.trainable = False 

 

    x = vgg.output 

    x = tf.keras.layers.GlobalAveragePooling2D()(x) 

    x = tf.keras.layers.Dense(2, activation="softmax")(x) 

 

    model = tf.keras.Model(vgg.input, x) 

    model.compile(loss = "categorical_crossentropy", 

                  optimizer = Adam(learning_rate=0.0001),  

                  metrics=["accuracy"]) 

     

    return model 

 

def train_model(): 

    # Define variables 

    SHUFFLE = True 

    SHAPE = (512, 512, 3) 

    batch_size = 8 
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    # Load and preprocess the datasets 

    root_dir = 'C:/Programming/FinalYearProject/dataset512x512' 

    train_datagen = ImageDataGenerator( 

            validation_split=0.2, rescale=1./255 

    ) 

    validation_datagen = ImageDataGenerator( 

            validation_split=0.2, rescale=1./255 

    ) 

    train_generator = train_datagen.flow_from_directory( 

                root_dir, 

                target_size = (SHAPE[0], SHAPE[1]), 

                batch_size = batch_size, 

                class_mode = 'categorical', 

                shuffle = SHUFFLE, 

                subset = 'training', 

                seed = 33 

    ) 

    validation_generator = validation_datagen.flow_from_directory( 

                root_dir, 

                target_size = (SHAPE[0], SHAPE[1]), 

                batch_size = batch_size, 

                class_mode = 'categorical', 

                shuffle = SHUFFLE, 

                subset = 'validation', 

                seed = 33 

    ) 

    model = get_model(SHAPE) 

    model.fit(train_generator, 

              validation_data=validation_generator, 

              epochs=50) 

    model.save('transfer-trained-vgg16.h5') 

 

if __name__ == "__main__": 

    train_model() 
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main.py 

 

from app import app 

 

if __name__ == '__main__': 

    app.run(debug=True) 
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index.html 

 

<!DOCTYPE html> 

<html lang="en"> 

<head> 

    <meta charset="UTF-8"> 

    <meta http-equiv="X-UA-Compatible" content="IE=edge"> 

    <meta name="viewport" content="width=device-width, initial-scale=1.0"> 

    <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0-

alpha1/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-

GLhlTQ8iRABdZLl6O3oVMWSktQOp6b7In1Zl3/Jr59b6EGGoI1aFkw7cmDA6j6gD" 

crossorigin="anonymous"> 

    <link rel="stylesheet" href="../static/css/style.css"> 

    <title>Defect Checker</title> 

</head> 

<body> 

    <div id="content p-5" class="flexbox"> 

        <div class="card flexbox p-3 mt-5" style="min-width: 400px; max-width: 

800px; max-height: 500px;"> 

            <div class="card-body flexbox"> 

                <div class="row"> 

                    <div class="col p-4"> 

                        <div id="image-box"> 

                            <!-- Image added here with heatmap/boxes when 

uploaded using js --> 

                        </div> 

                    </div> 

                </div> 

                <div class="row"> 

                    <div class="col"> 

                        <div id="loader" style="display:none;"> 

                            <img src="{{ url_for('static', 

filename='loading.gif') }}"> 

                        </div> 

                    </div> 

                </div> 

                <div class="row"> 

                    <div class="col"> 

                        <h2 id="defective-status"></h2> 

                        <h5 id="confidence"></h5> 

                    </div> 

                    <div class="col"> 

                        <input type="file" accept="image/png, image/jpeg"> 

                    </div> 

                </div> 
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            </div> 

        </div> 

    </div> 

    <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0-

alpha1/dist/js/bootstrap.bundle.min.js" integrity="sha384-

w76AqPfDkMBDXo30jS1Sgez6pr3x5MlQ1ZAGC+nuZB+EYdgRZgiwxhTBTkF7CXvN" 

crossorigin="anonymous"></script> 

    <script 

src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.3/jquery.min.js"></script> 

    <script> 

        $(document).ready(function (e) { 

            $('input[type="file"]').change(function () { 

                let file = this.files[0]; 

                let reader = new FileReader(); 

                reader.onloadend = function () { 

                    $('#image-box').html('<image id="img" src="' + reader.result 

+ '" style="max-width: 100%;"/>'); 

                } 

                if (file) { 

                    let formData = new FormData(); 

                    formData.append('raw_image', file); 

                    reader.readAsDataURL(file); 

                    $.ajax({ 

                        url: "/process-image", 

                        type: 'POST', 

                        data: formData, 

                        processData: false, 

                        contentType: false, 

                        beforeSend: function(){ 

                            $("#image-box").hide(); 

                            $("#loader").show(); 

                            $("#defective-status").html(""); 

                            $("#confidence").html(""); 

                        }, 

                        success: function(response){ 

                            $("#image-box").show(); 

                            $("#loader").hide(); 

                            if (response && response.is_defective !== undefined) 

{ 

                                var confidence = response.confidence; 

                                $("#confidence").html("Confidence: " + 

confidence.toFixed(2) + "%"); 

                                if (response.is_defective) { 

                                    $("#defective-status").html("Defective"); 

                                    let base64data = response.image; 
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                                    $("#img").attr("src", 

"data:image/png;base64," + base64data); 

                                } else { 

                                    $("#defective-status").html("Not Defective"); 

                                } 

                            } else { 

                                alert("Invalid response from the server."); 

                            } 

                        }, 

                        error: function(xhr, desc, err){ 

                            $("#loader").hide(); 

                            alert("Something went wrong! Please try again."); 

                        } 

                    }); 

                } else { 

                    alert("Image upload failed!"); 

                } 

            }); 

        }); 

    </script> 

</body> 

</html> 

 

  



 

  

 

116 

 

style.css 

 

.flexbox { 

    display: flex; 

    align-items: center; 

    justify-content: center; 

} 
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Experiment Code 

comparison.py 

 

import os 

import random 

 

import numpy as np 

import tensorflow as tf 

from tensorflow.keras.applications import VGG16, InceptionV3, ResNet50 

from tensorflow.keras.layers import Conv2D, Dense, Flatten, MaxPooling2D 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.optimizers import Adam 

from tensorflow.keras.preprocessing.image import ImageDataGenerator 

 

# Prevent GPU memory allocation issues 

gpus = tf.config.experimental.list_physical_devices('GPU') 

if gpus: 

  try: 

    for gpu in gpus: 

      tf.config.experimental.set_memory_growth(gpu, True) 

  except RuntimeError as e: 

    print(e) 

 

# Define variables 

SHUFFLE = True 

SHAPE = (128, 128, 3) 

batch_size = 8 

 

# Load and preprocess the datasets 

root_dir = 'C:/Programming/FinalYearProject/dataset512x512' 

train_datagen = ImageDataGenerator( 

        validation_split=0.2, rescale=1./255 

) 

test_datagen = ImageDataGenerator( 

        validation_split=0.2, rescale=1./255 

) 

train_generator = train_datagen.flow_from_directory( 

            root_dir, 

            target_size = (SHAPE[0], SHAPE[1]), 

            batch_size = batch_size, 

            class_mode = 'categorical', 

            shuffle = SHUFFLE, 

            subset = 'training', 
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            seed = 33 

) 

validation_generator = test_datagen.flow_from_directory( 

            root_dir, 

            target_size = (SHAPE[0], SHAPE[1]), 

            batch_size = batch_size, 

            class_mode = 'categorical', 

            shuffle = SHUFFLE, 

            subset = 'validation', 

            seed = 33 

) 

 

def set_seed(seed): 

    tf.random.set_seed(seed) 

    os.environ['PYTHONHASHSEED'] = str(seed) 

    np.random.seed(seed) 

    random.seed(seed) 

 

def build_custom_model(SHAPE: tuple): 

    model = Sequential([ 

        Conv2D(32, 3, padding='same', activation='relu', input_shape=SHAPE), 

        MaxPooling2D(), 

        Conv2D(64, 3, padding='same', activation='relu'), 

        Conv2D(64, 3, padding='same', activation='relu'), 

        MaxPooling2D(), 

        Conv2D(128, 3, padding='same', activation='relu'), 

        Conv2D(128, 3, padding='same', activation='relu'), 

        MaxPooling2D(), 

        Flatten(), 

        Dense(1024, activation='relu'), 

        Dense(1024, activation='relu'), 

        Dense(2, activation='sigmoid') 

    ]) 

    model.compile(optimizer=Adam(learning_rate=0.0001), 

                        loss="categorical_crossentropy", 

                        metrics=['accuracy']) 

     

    return model 

 

def build_model(name: str, SHAPE: tuple): 

    set_seed(33) 

     

    if name == "custom": 
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        return build_custom_model(SHAPE) 

     

    if name == "vgg16": 

        base_model = VGG16(weights='imagenet', include_top=False, 

input_shape=SHAPE) 

        base_model.summary() 

    elif name == "inceptionv3": 

        base_model = InceptionV3(weights='imagenet', include_top=False, 

input_shape=SHAPE) 

        base_model.summary() 

    elif name == "resnet50": 

        base_model = ResNet50(weights='imagenet', include_top=False, 

input_shape=SHAPE) 

        base_model.summary() 

    else: 

        raise Exception("Invalid model name") 

         

    for layer in base_model.layers[:-5]: 

            layer.trainable = False     

     

    x = base_model.output 

    x = tf.keras.layers.GlobalAveragePooling2D()(x) 

    x = tf.keras.layers.Dense(2, activation="softmax")(x) 

     

    model = tf.keras.Model(base_model.input, x) 

    model.compile(optimizer=Adam(learning_rate=0.0001), 

                loss="categorical_crossentropy", 

                metrics=['accuracy']) 

    return model 

 

def train_model(name: str, model): 

     

    history = model.fit(train_generator, 

              validation_data=validation_generator, 

              steps_per_epoch=train_generator.samples/train_generator.batch_size, 

              epochs=10) 

    model.save(f'trained-{name}.h5') 

    print(f"Saved model: trained-{name}.h5") 

     

    return history 

     

     

# Define a function to calculate TP, TN, FP, FN rates 

def calculate_rates(y_true_labels, y_pred_labels): 
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    # Calculate the confusion matrix metrics 

    tn = tf.keras.metrics.TrueNegatives() 

    tn.update_state(y_true_labels, y_pred_labels) 

    fp = tf.keras.metrics.FalsePositives() 

    fp.update_state(y_true_labels, y_pred_labels) 

    fn = tf.keras.metrics.FalseNegatives() 

    fn.update_state(y_true_labels, y_pred_labels) 

    tp = tf.keras.metrics.TruePositives() 

    tp.update_state(y_true_labels, y_pred_labels) 

    # Get the TP, TN, FP, FN rates 

    tp_rate = tp.result().numpy() 

    tn_rate = tn.result().numpy() 

    fp_rate = fp.result().numpy() 

    fn_rate = fn.result().numpy() 

 

    return tp_rate, tn_rate, fp_rate, fn_rate 

 

def calculate_metrics(y_true, y_pred, name: str): 

    tp, tn, fp, fn = calculate_rates(y_true, y_pred) 

 

    # Calculate the accuracy, precision, recall, and F1-score 

    accuracy = (tp + tn) / (tp + tn + fp + fn) 

    precision = tp / (tp + fp) 

    recall = tp / (tp + fn) 

    f1_score = 2 * precision * recall / (precision + recall) 

 

    print("\n===============================================") 

    print("{}".format(name)) 

    # Print the confusion matrix 

    print("Confusion Matrix:") 

    print("           Predicted Negative   Predicted Positive") 

    print("Actual Negative       {}                 {}".format(tn, fp)) 

    print("Actual Positive       {}                 {}".format(fn, tp)) 

    # Print the performance metrics 

    print("Accuracy: {:.3f}".format(accuracy)) 

    print("Precision: {:.3f}".format(precision)) 

    print("Recall: {:.3f}".format(recall)) 

    print("F1-score: {:.3f}".format(f1_score)) 

    print("===============================================\n") 

 

def evaluate_model(model, y_true, name: str): 

    y_pred = model.predict(validation_generator, verbose=0) 

    y_pred = np.argmax(y_pred, axis=1) 
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    calculate_metrics(y_true, y_pred, name) 

 

def train_models(): 

    ### TRAIN MODELS ### 

    custom_model = build_model("custom", SHAPE) 

    vgg16 = build_model("vgg16", SHAPE) 

    inceptionv3 = build_model("inceptionv3", SHAPE) 

    resnet50 = build_model("resnet50", SHAPE) 

    trained_custom_model = train_model("custom", custom_model) 

    trained_vgg16 = train_model("vgg16", vgg16) 

    trained_inceptionv3 = train_model("inceptionv3", inceptionv3) 

    trained_resnet50 = train_model("resnet50", resnet50) 

     

    # Get the training accuracy of each model 

    custom_model_training_accuracy = trained_custom_model.history['accuracy'][-1] 

    vgg16_training_accuracy = trained_vgg16.history['accuracy'][-1] 

    inceptionv3_training_accuracy = trained_inceptionv3.history['accuracy'][-1] 

    resnet50_training_accuracy = trained_resnet50.history['accuracy'][-1] 

    # Output the training accuracy of each model 

    print("Custom Model Training Accuracy: ", custom_model_training_accuracy) 

    print("VGG16 Training Accuracy: ", vgg16_training_accuracy) 

    print("InceptionV3 Training Accuracy: ", inceptionv3_training_accuracy) 

    print("ResNet50 Training Accuracy: ", resnet50_training_accuracy) 

     

    return trained_custom_model, trained_vgg16, trained_inceptionv3, 

trained_resnet50 

 

def load_trained_models(): 

    ### LOAD TRAINED MODELS ### 

    custom = tf.keras.models.load_model('trained-custom.h5') 

    vgg16 = tf.keras.models.load_model('trained-vgg16.h5') 

    inceptionv3 = tf.keras.models.load_model('trained-inceptionv3.h5') 

    resnet50 = tf.keras.models.load_model('trained-resnet50.h5') 

     

    return custom, vgg16, inceptionv3, resnet50 

 

def evaluate_models(custom, vgg16, inceptionv3, resnet50): 

    ### EVALUATE MODELS - DISABLE SHUFFLE ON DATASETS ###  

    y_true = validation_generator.classes 

    evaluate_model(custom, y_true,"Custom Model") 

    evaluate_model(vgg16, y_true,"VGG16 (Transfer Learning)") 

    evaluate_model(inceptionv3, y_true,"InceptionV3 (Transfer Learning)") 

    evaluate_model(resnet50, y_true,"ResNet50 (Transfer Learning)") 
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### UNCOMMENT FOR TRAINING + CHANGE SHUFFLE TO TRUE ### 

train_models() 

 

### UNCOMMENT FOR EVALUATION + CHANGE SHUFFLE TO FALSE  ### 

# custom, vgg16, inceptionv3, resnet50 = load_trained_models() 

# evaluate_models(custom, vgg16, inceptionv3, resnet50) 
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hyperparameters.py 

 

import tensorflow as tf 

from tensorflow.keras import Sequential 

from tensorflow.keras.layers.experimental.preprocessing import Rescaling, 

Resizing 

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense 

from tensorflow.keras.optimizers import Adam 

from bayes_opt import BayesianOptimization 

 

root_dir = 'C:/Programming/FinalYearProject/dataset512x512' 

 

# Define your train and validation datasets 

train_ds = tf.keras.preprocessing.image_dataset_from_directory( 

    root_dir, 

    validation_split=0.2, 

    subset="training", 

    seed=123, 

    image_size=(512, 512), 

    batch_size=32, 

    labels="inferred", 

    label_mode="binary", 

    color_mode="rgb" 

) 

val_ds = tf.keras.preprocessing.image_dataset_from_directory( 

    root_dir, 

    validation_split=0.2, 

    subset="validation", 

    seed=123, 

    image_size=(512, 512), 

    batch_size=32, 

    labels="inferred", 

    label_mode="binary", 

    color_mode="rgb" 

) 

 

def build_model(learning_rate, dropout_rate): 

    model = Sequential([ 

        Rescaling(1./255, input_shape=(512, 512, 3)), 

        Resizing(128, 128), 

        Conv2D(32, 3, padding='same', activation='relu'), 

        MaxPooling2D(), 

        Conv2D(64, 3, padding='same', activation='relu'), 

        Conv2D(64, 3, padding='same', activation='relu'), 

        MaxPooling2D(), 
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        Conv2D(128, 3, padding='same', activation='relu'), 

        Conv2D(128, 3, padding='same', activation='relu'), 

        MaxPooling2D(), 

        Flatten(), 

        Dense(1024, activation='relu'), 

        Dense(1024, activation='relu'), 

        Dense(2, activation='sigmoid') 

    ]) 

 

    # Compile the model with the specified learning rate and dropout rate 

    optimizer = Adam(learning_rate=learning_rate) 

    model.compile(optimizer=optimizer, 

                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=

False), 

                  metrics=['accuracy']) 

 

    # Set the dropout rate for applicable layers 

    for layer in model.layers: 

        if isinstance(layer, tf.keras.layers.Dropout): 

            layer.rate = dropout_rate 

 

    return model 

 

# Define the function to optimize 

def optimize_model(learning_rate, dropout_rate): 

    # Build the model 

    model = build_model(learning_rate, dropout_rate) 

 

    # Train the model 

    history = model.fit(train_ds, validation_data=val_ds, epochs=50, verbose=0) 

 

    # Get the best validation accuracy 

    best_val_accuracy = max(history.history['val_accuracy']) 

 

    return best_val_accuracy 

 

if __name__ == '__main__': 

    # Define the hyperparameter search space 

    hyperparameter_space = { 

        'learning_rate': (0.0005, 0.001), 

        'dropout_rate': (0.2, 0.5) 

    } 

 

    # Perform Bayesian optimization 



 

  

 

125 

 

    optimizer = BayesianOptimization(f=optimize_model, 

pbounds=hyperparameter_space, verbose=2) 

    optimizer.maximize(init_points=3, n_iter=10) 

 

    # Get the best hyperparameters and the corresponding validation accuracy 

    best_hyperparameters = optimizer.max['params'] 

    best_val_accuracy = optimizer.max['target'] 

 

    print("Best Hyperparameters:") 

    print(best_hyperparameters) 

    print("Best Validation Accuracy:") 

    print(best_val_accuracy) 
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graph.py 

 

from matplotlib import pyplot as plt 

 

from hyperparameters import build_model, train_ds, val_ds 

 

EPOCHS = 50 

LEARNING_RATE = 0.0006425108307104302 

DROPOUT_RATE = 0.46386941186999164 

 

model = build_model(LEARNING_RATE, DROPOUT_RATE) 

history = model.fit(train_ds, validation_data=val_ds, epochs=EPOCHS, verbose=1) 

model.save('C:/Programming/FinalYearProject/tuned-trained-model.h5') 

 

## Assigning the history of the model to variables 

acc = history.history['accuracy'] 

val_acc = history.history['val_accuracy'] 

loss = history.history['loss'] 

val_loss = history.history['val_loss'] 

 

epochs_range = range(EPOCHS) 

 

## Plotting the training and validation accuracy and loss 

plt.figure(figsize=(18, 8)) 

plt.subplot(1, 2, 1) 

plt.plot(epochs_range, acc, label='Training Accuracy') 

plt.plot(epochs_range, val_acc, label='Validation Accuracy') 

plt.legend(loc='lower right') 

plt.title('Training and Validation Accuracy') 

plt.subplot(1, 2, 2) 

plt.plot(epochs_range, loss, label='Training Loss') 

plt.plot(epochs_range, val_loss, label='Validation Loss') 

plt.legend(loc='upper right') 

plt.title('Training and Validation Loss') 

plt.show() 
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dataset.py 

 

import tensorflow as tf 

from matplotlib import pyplot as plt 

 

root_dir = 'C:/Programming/FinalYearProject/dataset512x512' 

 

# Define your train and validation datasets 

train_ds = tf.keras.preprocessing.image_dataset_from_directory( 

    root_dir, 

    validation_split=0.2, 

    subset="training", 

    seed=123, 

    image_size=(512, 512), 

    batch_size=32, 

    labels="inferred", 

    label_mode="binary", 

    color_mode="rgb" 

) 

val_ds = tf.keras.preprocessing.image_dataset_from_directory( 

    root_dir, 

    validation_split=0.2, 

    subset="validation", 

    seed=123, 

    image_size=(512, 512), 

    batch_size=32, 

    labels="inferred", 

    label_mode="binary", 

    color_mode="rgb" 

) 

 

# Print the class names 

class_names = train_ds.class_names 

print(class_names) 

 

# Visualize the dataset 

plt.figure(figsize=(10, 10)) 

for images, labels in train_ds.take(1): 

  for i in range(9): 

    ax = plt.subplot(3, 3, i + 1) 

    plt.imshow(images[i].numpy().astype("uint8")) 

    plt.title(class_names[labels[i].numpy()[0].astype(int)]) 

    plt.axis("off") 

plt.show() 

 


